| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expsubap | GIF version | ||
| Description: Exponent subtraction law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
| Ref | Expression |
|---|---|
| expsubap | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl 9402 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 2 | expaddzap 10726 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴↑𝑀) · (𝐴↑-𝑁))) | |
| 3 | 1, 2 | sylanr2 405 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴↑𝑀) · (𝐴↑-𝑁))) |
| 4 | zcn 9376 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 5 | zcn 9376 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 6 | negsub 8319 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) | |
| 7 | 4, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
| 8 | 7 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
| 9 | 8 | oveq2d 5959 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = (𝐴↑(𝑀 − 𝑁))) |
| 10 | expnegzap 10716 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | |
| 11 | 10 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| 12 | 11 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| 13 | 12 | oveq2d 5959 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) · (𝐴↑-𝑁)) = ((𝐴↑𝑀) · (1 / (𝐴↑𝑁)))) |
| 14 | expclzap 10707 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℂ) | |
| 15 | 14 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℂ) |
| 16 | 15 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑀) ∈ ℂ) |
| 17 | expclzap 10707 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | |
| 18 | 17 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) |
| 19 | 18 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑁) ∈ ℂ) |
| 20 | expap0i 10714 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) | |
| 21 | 20 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) |
| 22 | 21 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑁) # 0) |
| 23 | 16, 19, 22 | divrecapd 8865 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) / (𝐴↑𝑁)) = ((𝐴↑𝑀) · (1 / (𝐴↑𝑁)))) |
| 24 | 13, 23 | eqtr4d 2240 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) · (𝐴↑-𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
| 25 | 3, 9, 24 | 3eqtr3d 2245 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 − cmin 8242 -cneg 8243 # cap 8653 / cdiv 8744 ℤcz 9371 ↑cexp 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-seqfrec 10591 df-exp 10682 |
| This theorem is referenced by: expm1ap 10732 ltexp2a 10734 leexp2a 10735 iexpcyc 10787 expsubapd 10827 |
| Copyright terms: Public domain | W3C validator |