![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expsubap | GIF version |
Description: Exponent subtraction law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
Ref | Expression |
---|---|
expsubap | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 9348 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
2 | expaddzap 10654 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴↑𝑀) · (𝐴↑-𝑁))) | |
3 | 1, 2 | sylanr2 405 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴↑𝑀) · (𝐴↑-𝑁))) |
4 | zcn 9322 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
5 | zcn 9322 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
6 | negsub 8267 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) | |
7 | 4, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
8 | 7 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
9 | 8 | oveq2d 5934 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = (𝐴↑(𝑀 − 𝑁))) |
10 | expnegzap 10644 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | |
11 | 10 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
12 | 11 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
13 | 12 | oveq2d 5934 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) · (𝐴↑-𝑁)) = ((𝐴↑𝑀) · (1 / (𝐴↑𝑁)))) |
14 | expclzap 10635 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℂ) | |
15 | 14 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℂ) |
16 | 15 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑀) ∈ ℂ) |
17 | expclzap 10635 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | |
18 | 17 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) |
19 | 18 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑁) ∈ ℂ) |
20 | expap0i 10642 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) | |
21 | 20 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) |
22 | 21 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑁) # 0) |
23 | 16, 19, 22 | divrecapd 8812 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) / (𝐴↑𝑁)) = ((𝐴↑𝑀) · (1 / (𝐴↑𝑁)))) |
24 | 13, 23 | eqtr4d 2229 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) · (𝐴↑-𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
25 | 3, 9, 24 | 3eqtr3d 2234 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℂcc 7870 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 − cmin 8190 -cneg 8191 # cap 8600 / cdiv 8691 ℤcz 9317 ↑cexp 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 df-exp 10610 |
This theorem is referenced by: expm1ap 10660 ltexp2a 10662 leexp2a 10663 iexpcyc 10715 expsubapd 10755 |
Copyright terms: Public domain | W3C validator |