![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expsubap | GIF version |
Description: Exponent subtraction law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.) |
Ref | Expression |
---|---|
expsubap | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 9270 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
2 | expaddzap 10547 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴↑𝑀) · (𝐴↑-𝑁))) | |
3 | 1, 2 | sylanr2 405 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = ((𝐴↑𝑀) · (𝐴↑-𝑁))) |
4 | zcn 9244 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
5 | zcn 9244 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
6 | negsub 8192 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) | |
7 | 4, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
8 | 7 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
9 | 8 | oveq2d 5885 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + -𝑁)) = (𝐴↑(𝑀 − 𝑁))) |
10 | expnegzap 10537 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | |
11 | 10 | 3expa 1203 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
12 | 11 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
13 | 12 | oveq2d 5885 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) · (𝐴↑-𝑁)) = ((𝐴↑𝑀) · (1 / (𝐴↑𝑁)))) |
14 | expclzap 10528 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℂ) | |
15 | 14 | 3expa 1203 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℂ) |
16 | 15 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑀) ∈ ℂ) |
17 | expclzap 10528 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | |
18 | 17 | 3expa 1203 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) |
19 | 18 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑁) ∈ ℂ) |
20 | expap0i 10535 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) | |
21 | 20 | 3expa 1203 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) |
22 | 21 | adantrl 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑𝑁) # 0) |
23 | 16, 19, 22 | divrecapd 8736 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) / (𝐴↑𝑁)) = ((𝐴↑𝑀) · (1 / (𝐴↑𝑁)))) |
24 | 13, 23 | eqtr4d 2213 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴↑𝑀) · (𝐴↑-𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
25 | 3, 9, 24 | 3eqtr3d 2218 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 (class class class)co 5869 ℂcc 7797 0cc0 7799 1c1 7800 + caddc 7802 · cmul 7804 − cmin 8115 -cneg 8116 # cap 8525 / cdiv 8615 ℤcz 9239 ↑cexp 10502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7890 ax-resscn 7891 ax-1cn 7892 ax-1re 7893 ax-icn 7894 ax-addcl 7895 ax-addrcl 7896 ax-mulcl 7897 ax-mulrcl 7898 ax-addcom 7899 ax-mulcom 7900 ax-addass 7901 ax-mulass 7902 ax-distr 7903 ax-i2m1 7904 ax-0lt1 7905 ax-1rid 7906 ax-0id 7907 ax-rnegex 7908 ax-precex 7909 ax-cnre 7910 ax-pre-ltirr 7911 ax-pre-ltwlin 7912 ax-pre-lttrn 7913 ax-pre-apti 7914 ax-pre-ltadd 7915 ax-pre-mulgt0 7916 ax-pre-mulext 7917 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7981 df-mnf 7982 df-xr 7983 df-ltxr 7984 df-le 7985 df-sub 8117 df-neg 8118 df-reap 8519 df-ap 8526 df-div 8616 df-inn 8906 df-n0 9163 df-z 9240 df-uz 9515 df-seqfrec 10429 df-exp 10503 |
This theorem is referenced by: expm1ap 10553 ltexp2a 10555 leexp2a 10556 iexpcyc 10607 expsubapd 10647 |
Copyright terms: Public domain | W3C validator |