ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu GIF version

Theorem ltexprlemopu 7786
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 7796. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopu ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopu
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemelu 7782 . . . 4 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
32simprbi 275 . . 3 (𝑟 ∈ (2nd𝐶) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
4 19.42v 1953 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
5 19.42v 1953 . . . . . . . . 9 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
65anbi2i 457 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
74, 6bitri 184 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
8 ltrelpr 7688 . . . . . . . . . . . . . . 15 <P ⊆ (P × P)
98brel 4770 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 114 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
11 prop 7658 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1210, 11syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prnminu 7672 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1412, 13sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1514adantrl 478 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1615adantrl 478 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
17 ltdfpr 7689 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
1817biimpd 144 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
199, 18mpcom 36 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
2019ad2antrr 488 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
219simpld 112 . . . . . . . . . . . . . . . 16 (𝐴<P 𝐵𝐴P)
2221ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝐴P)
2322adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴P)
24 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2524simpld 112 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 ∈ (1st𝐴))
2625adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 ∈ (1st𝐴))
27 simprrl 539 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐴))
28 prop 7658 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
29 prltlu 7670 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3028, 29syl3an1 1304 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3123, 26, 27, 30syl3anc 1271 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑡)
32 simplll 533 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simprrr 540 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (1st𝐵))
34 simplrl 535 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝐵))
35 prltlu 7670 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3612, 35syl3an1 1304 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3732, 33, 34, 36syl3anc 1271 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 <Q 𝑠)
38 ltsonq 7581 . . . . . . . . . . . . . 14 <Q Or Q
39 ltrelnq 7548 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4038, 39sotri 5123 . . . . . . . . . . . . 13 ((𝑦 <Q 𝑡𝑡 <Q 𝑠) → 𝑦 <Q 𝑠)
4131, 37, 40syl2anc 411 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑠)
4220, 41rexlimddv 2653 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 <Q 𝑠)
43 elprnql 7664 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4428, 43sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4522, 25, 44syl2anc 411 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦Q)
46 elprnqu 7665 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4712, 46sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4847ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑠Q)
49 ltexnqq 7591 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5045, 48, 49syl2anc 411 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5142, 50mpbid 147 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠)
52 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) = 𝑠)
53 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 <Q (𝑦 +Q 𝑟))
5452, 53eqbrtrd 4104 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
55 simprl 529 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞Q)
56 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑟Q)
5756adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑟Q)
5845adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦Q)
59 ltanqg 7583 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6055, 57, 58, 59syl3anc 1271 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6154, 60mpbird 167 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞 <Q 𝑟)
6225adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦 ∈ (1st𝐴))
63 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 ∈ (2nd𝐵))
6452, 63eqeltrd 2306 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) ∈ (2nd𝐵))
6562, 64jca 306 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))
6661, 55, 65jca32 310 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
6766expr 375 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ 𝑞Q) → ((𝑦 +Q 𝑞) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6867reximdva 2632 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (∃𝑞Q (𝑦 +Q 𝑞) = 𝑠 → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6951, 68mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7016, 69rexlimddv 2653 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7170eximi 1646 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
727, 71sylbir 135 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
73 rexcom4 2823 . . . . . 6 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7472, 73sylibr 134 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
75 19.42v 1953 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
76 19.42v 1953 . . . . . . . 8 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
7776anbi2i 457 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7875, 77bitri 184 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7978rexbii 2537 . . . . 5 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8074, 79sylib 122 . . . 4 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
811ltexprlemelu 7782 . . . . . 6 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
8281anbi2i 457 . . . . 5 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8382rexbii 2537 . . . 4 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8480, 83sylibr 134 . . 3 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
853, 84sylanr2 405 . 2 ((𝐴<P 𝐵 ∧ (𝑟Q𝑟 ∈ (2nd𝐶))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
86853impb 1223 1 ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   +Q cplq 7465   <Q cltq 7468  Pcnp 7474  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-ltnqqs 7536  df-inp 7649  df-iltp 7653
This theorem is referenced by:  ltexprlemrnd  7788
  Copyright terms: Public domain W3C validator