Step | Hyp | Ref
| Expression |
1 | | ltexprlem.1 |
. . . . 5
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd
‘𝐵))}〉 |
2 | 1 | ltexprlemelu 7513 |
. . . 4
⊢ (𝑟 ∈ (2nd
‘𝐶) ↔ (𝑟 ∈ Q ∧
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) |
3 | 2 | simprbi 273 |
. . 3
⊢ (𝑟 ∈ (2nd
‘𝐶) →
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))) |
4 | | 19.42v 1886 |
. . . . . . . 8
⊢
(∃𝑦(𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ↔ (𝐴<P
𝐵 ∧ ∃𝑦(𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵))))) |
5 | | 19.42v 1886 |
. . . . . . . . 9
⊢
(∃𝑦(𝑟 ∈ Q ∧
(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵))) ↔ (𝑟 ∈ Q ∧
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) |
6 | 5 | anbi2i 453 |
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ ∃𝑦(𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ↔ (𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))))) |
7 | 4, 6 | bitri 183 |
. . . . . . 7
⊢
(∃𝑦(𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ↔ (𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))))) |
8 | | ltrelpr 7419 |
. . . . . . . . . . . . . . 15
⊢
<P ⊆ (P ×
P) |
9 | 8 | brel 4637 |
. . . . . . . . . . . . . 14
⊢ (𝐴<P
𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) |
10 | 9 | simprd 113 |
. . . . . . . . . . . . 13
⊢ (𝐴<P
𝐵 → 𝐵 ∈ P) |
11 | | prop 7389 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
12 | 10, 11 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
13 | | prnminu 7403 |
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q (𝑦 +Q
𝑟)) |
14 | 12, 13 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q (𝑦 +Q
𝑟)) |
15 | 14 | adantrl 470 |
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q (𝑦 +Q
𝑟)) |
16 | 15 | adantrl 470 |
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑠 ∈
(2nd ‘𝐵)𝑠 <Q (𝑦 +Q
𝑟)) |
17 | | ltdfpr 7420 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴<P 𝐵 ↔ ∃𝑡 ∈ Q (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) |
18 | 17 | biimpd 143 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴<P 𝐵 → ∃𝑡 ∈ Q (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) |
19 | 9, 18 | mpcom 36 |
. . . . . . . . . . . . 13
⊢ (𝐴<P
𝐵 → ∃𝑡 ∈ Q (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵))) |
20 | 19 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → ∃𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐴) ∧ 𝑡 ∈ (1st ‘𝐵))) |
21 | 9 | simpld 111 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴<P
𝐵 → 𝐴 ∈ P) |
22 | 21 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → 𝐴 ∈ P) |
23 | 22 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝐴 ∈
P) |
24 | | simplrr 526 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → (𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))) |
25 | 24 | simpld 111 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → 𝑦 ∈ (1st ‘𝐴)) |
26 | 25 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑦 ∈ (1st
‘𝐴)) |
27 | | simprrl 529 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑡 ∈ (2nd
‘𝐴)) |
28 | | prop 7389 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
29 | | prltlu 7401 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑦 ∈ (1st
‘𝐴) ∧ 𝑡 ∈ (2nd
‘𝐴)) → 𝑦 <Q
𝑡) |
30 | 28, 29 | syl3an1 1253 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑦 ∈ (1st
‘𝐴) ∧ 𝑡 ∈ (2nd
‘𝐴)) → 𝑦 <Q
𝑡) |
31 | 23, 26, 27, 30 | syl3anc 1220 |
. . . . . . . . . . . . 13
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑦 <Q
𝑡) |
32 | | simplll 523 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝐴<P
𝐵) |
33 | | simprrr 530 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑡 ∈ (1st
‘𝐵)) |
34 | | simplrl 525 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑠 ∈ (2nd
‘𝐵)) |
35 | | prltlu 7401 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑡 ∈ (1st
‘𝐵) ∧ 𝑠 ∈ (2nd
‘𝐵)) → 𝑡 <Q
𝑠) |
36 | 12, 35 | syl3an1 1253 |
. . . . . . . . . . . . . 14
⊢ ((𝐴<P
𝐵 ∧ 𝑡 ∈ (1st ‘𝐵) ∧ 𝑠 ∈ (2nd ‘𝐵)) → 𝑡 <Q 𝑠) |
37 | 32, 33, 34, 36 | syl3anc 1220 |
. . . . . . . . . . . . 13
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑡 <Q
𝑠) |
38 | | ltsonq 7312 |
. . . . . . . . . . . . . 14
⊢
<Q Or Q |
39 | | ltrelnq 7279 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
40 | 38, 39 | sotri 4980 |
. . . . . . . . . . . . 13
⊢ ((𝑦 <Q
𝑡 ∧ 𝑡 <Q 𝑠) → 𝑦 <Q 𝑠) |
41 | 31, 37, 40 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑡 ∈ Q ∧ (𝑡 ∈ (2nd
‘𝐴) ∧ 𝑡 ∈ (1st
‘𝐵)))) → 𝑦 <Q
𝑠) |
42 | 20, 41 | rexlimddv 2579 |
. . . . . . . . . . 11
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → 𝑦 <Q 𝑠) |
43 | | elprnql 7395 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑦 ∈ (1st
‘𝐴)) → 𝑦 ∈
Q) |
44 | 28, 43 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑦 ∈ (1st
‘𝐴)) → 𝑦 ∈
Q) |
45 | 22, 25, 44 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → 𝑦 ∈ Q) |
46 | | elprnqu 7396 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑠 ∈ (2nd
‘𝐵)) → 𝑠 ∈
Q) |
47 | 12, 46 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝐴<P
𝐵 ∧ 𝑠 ∈ (2nd ‘𝐵)) → 𝑠 ∈ Q) |
48 | 47 | ad2ant2r 501 |
. . . . . . . . . . . 12
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → 𝑠 ∈ Q) |
49 | | ltexnqq 7322 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Q ∧
𝑠 ∈ Q)
→ (𝑦
<Q 𝑠 ↔ ∃𝑞 ∈ Q (𝑦 +Q 𝑞) = 𝑠)) |
50 | 45, 48, 49 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → (𝑦 <Q 𝑠 ↔ ∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑠)) |
51 | 42, 50 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → ∃𝑞 ∈ Q (𝑦 +Q 𝑞) = 𝑠) |
52 | | simprr 522 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → (𝑦 +Q 𝑞) = 𝑠) |
53 | | simplrr 526 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑠 <Q (𝑦 +Q
𝑟)) |
54 | 52, 53 | eqbrtrd 3986 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → (𝑦 +Q 𝑞) <Q
(𝑦
+Q 𝑟)) |
55 | | simprl 521 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑞 ∈ Q) |
56 | | simplrl 525 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → 𝑟 ∈ Q) |
57 | 56 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑟 ∈ Q) |
58 | 45 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑦 ∈ Q) |
59 | | ltanqg 7314 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ Q ∧
𝑟 ∈ Q
∧ 𝑦 ∈
Q) → (𝑞
<Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q
(𝑦
+Q 𝑟))) |
60 | 55, 57, 58, 59 | syl3anc 1220 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q
(𝑦
+Q 𝑟))) |
61 | 54, 60 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑞 <Q 𝑟) |
62 | 25 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑦 ∈ (1st ‘𝐴)) |
63 | | simplrl 525 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → 𝑠 ∈ (2nd ‘𝐵)) |
64 | 52, 63 | eqeltrd 2234 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵)) |
65 | 62, 64 | jca 304 |
. . . . . . . . . . . . 13
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → (𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))) |
66 | 61, 55, 65 | jca32 308 |
. . . . . . . . . . . 12
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ (𝑞 ∈ Q ∧ (𝑦 +Q
𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
67 | 66 | expr 373 |
. . . . . . . . . . 11
⊢ ((((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) ∧ 𝑞 ∈ Q) → ((𝑦 +Q
𝑞) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))))) |
68 | 67 | reximdva 2559 |
. . . . . . . . . 10
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → (∃𝑞 ∈ Q (𝑦 +Q 𝑞) = 𝑠 → ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))))) |
69 | 51, 68 | mpd 13 |
. . . . . . . . 9
⊢ (((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) ∧ (𝑠 ∈ (2nd
‘𝐵) ∧ 𝑠 <Q
(𝑦
+Q 𝑟))) → ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
70 | 16, 69 | rexlimddv 2579 |
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
71 | 70 | eximi 1580 |
. . . . . . 7
⊢
(∃𝑦(𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑦∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
72 | 7, 71 | sylbir 134 |
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑦∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
73 | | rexcom4 2735 |
. . . . . 6
⊢
(∃𝑞 ∈
Q ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))) ↔
∃𝑦∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
74 | 72, 73 | sylibr 133 |
. . . . 5
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑞 ∈
Q ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
75 | | 19.42v 1886 |
. . . . . . 7
⊢
(∃𝑦(𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))) ↔ (𝑞 <Q
𝑟 ∧ ∃𝑦(𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))))) |
76 | | 19.42v 1886 |
. . . . . . . 8
⊢
(∃𝑦(𝑞 ∈ Q ∧
(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵))) ↔ (𝑞 ∈ Q ∧
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵)))) |
77 | 76 | anbi2i 453 |
. . . . . . 7
⊢ ((𝑞 <Q
𝑟 ∧ ∃𝑦(𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))) ↔ (𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))))) |
78 | 75, 77 | bitri 183 |
. . . . . 6
⊢
(∃𝑦(𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))) ↔ (𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))))) |
79 | 78 | rexbii 2464 |
. . . . 5
⊢
(∃𝑞 ∈
Q ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ (𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (2nd
‘𝐵)))) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))))) |
80 | 74, 79 | sylib 121 |
. . . 4
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))))) |
81 | 1 | ltexprlemelu 7513 |
. . . . . 6
⊢ (𝑞 ∈ (2nd
‘𝐶) ↔ (𝑞 ∈ Q ∧
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵)))) |
82 | 81 | anbi2i 453 |
. . . . 5
⊢ ((𝑞 <Q
𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))))) |
83 | 82 | rexbii 2464 |
. . . 4
⊢
(∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)) ↔ ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd
‘𝐵))))) |
84 | 80, 83 | sylibr 133 |
. . 3
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))) |
85 | 3, 84 | sylanr2 403 |
. 2
⊢ ((𝐴<P
𝐵 ∧ (𝑟 ∈ Q ∧ 𝑟 ∈ (2nd
‘𝐶))) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))) |
86 | 85 | 3impb 1181 |
1
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ Q ∧ 𝑟 ∈ (2nd
‘𝐶)) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))) |