ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu GIF version

Theorem ltexprlemopu 7715
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 7725. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopu ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopu
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemelu 7711 . . . 4 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
32simprbi 275 . . 3 (𝑟 ∈ (2nd𝐶) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
4 19.42v 1929 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
5 19.42v 1929 . . . . . . . . 9 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
65anbi2i 457 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
74, 6bitri 184 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
8 ltrelpr 7617 . . . . . . . . . . . . . . 15 <P ⊆ (P × P)
98brel 4726 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 114 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
11 prop 7587 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1210, 11syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prnminu 7601 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1412, 13sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1514adantrl 478 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1615adantrl 478 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
17 ltdfpr 7618 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
1817biimpd 144 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
199, 18mpcom 36 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
2019ad2antrr 488 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
219simpld 112 . . . . . . . . . . . . . . . 16 (𝐴<P 𝐵𝐴P)
2221ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝐴P)
2322adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴P)
24 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2524simpld 112 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 ∈ (1st𝐴))
2625adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 ∈ (1st𝐴))
27 simprrl 539 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐴))
28 prop 7587 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
29 prltlu 7599 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3028, 29syl3an1 1282 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3123, 26, 27, 30syl3anc 1249 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑡)
32 simplll 533 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simprrr 540 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (1st𝐵))
34 simplrl 535 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝐵))
35 prltlu 7599 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3612, 35syl3an1 1282 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3732, 33, 34, 36syl3anc 1249 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 <Q 𝑠)
38 ltsonq 7510 . . . . . . . . . . . . . 14 <Q Or Q
39 ltrelnq 7477 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4038, 39sotri 5077 . . . . . . . . . . . . 13 ((𝑦 <Q 𝑡𝑡 <Q 𝑠) → 𝑦 <Q 𝑠)
4131, 37, 40syl2anc 411 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑠)
4220, 41rexlimddv 2627 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 <Q 𝑠)
43 elprnql 7593 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4428, 43sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4522, 25, 44syl2anc 411 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦Q)
46 elprnqu 7594 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4712, 46sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4847ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑠Q)
49 ltexnqq 7520 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5045, 48, 49syl2anc 411 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5142, 50mpbid 147 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠)
52 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) = 𝑠)
53 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 <Q (𝑦 +Q 𝑟))
5452, 53eqbrtrd 4065 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
55 simprl 529 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞Q)
56 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑟Q)
5756adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑟Q)
5845adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦Q)
59 ltanqg 7512 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6055, 57, 58, 59syl3anc 1249 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6154, 60mpbird 167 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞 <Q 𝑟)
6225adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦 ∈ (1st𝐴))
63 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 ∈ (2nd𝐵))
6452, 63eqeltrd 2281 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) ∈ (2nd𝐵))
6562, 64jca 306 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))
6661, 55, 65jca32 310 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
6766expr 375 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ 𝑞Q) → ((𝑦 +Q 𝑞) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6867reximdva 2607 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (∃𝑞Q (𝑦 +Q 𝑞) = 𝑠 → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6951, 68mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7016, 69rexlimddv 2627 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7170eximi 1622 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
727, 71sylbir 135 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
73 rexcom4 2794 . . . . . 6 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7472, 73sylibr 134 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
75 19.42v 1929 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
76 19.42v 1929 . . . . . . . 8 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
7776anbi2i 457 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7875, 77bitri 184 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7978rexbii 2512 . . . . 5 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8074, 79sylib 122 . . . 4 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
811ltexprlemelu 7711 . . . . . 6 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
8281anbi2i 457 . . . . 5 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8382rexbii 2512 . . . 4 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8480, 83sylibr 134 . . 3 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
853, 84sylanr2 405 . 2 ((𝐴<P 𝐵 ∧ (𝑟Q𝑟 ∈ (2nd𝐶))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
86853impb 1201 1 ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wex 1514  wcel 2175  wrex 2484  {crab 2487  cop 3635   class class class wbr 4043  cfv 5270  (class class class)co 5943  1st c1st 6223  2nd c2nd 6224  Qcnq 7392   +Q cplq 7394   <Q cltq 7397  Pcnp 7403  <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-ltnqqs 7465  df-inp 7578  df-iltp 7582
This theorem is referenced by:  ltexprlemrnd  7717
  Copyright terms: Public domain W3C validator