ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu GIF version

Theorem ltexprlemopu 7665
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 7675. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopu ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopu
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemelu 7661 . . . 4 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
32simprbi 275 . . 3 (𝑟 ∈ (2nd𝐶) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
4 19.42v 1918 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
5 19.42v 1918 . . . . . . . . 9 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
65anbi2i 457 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
74, 6bitri 184 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
8 ltrelpr 7567 . . . . . . . . . . . . . . 15 <P ⊆ (P × P)
98brel 4712 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 114 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
11 prop 7537 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1210, 11syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prnminu 7551 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1412, 13sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1514adantrl 478 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1615adantrl 478 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
17 ltdfpr 7568 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
1817biimpd 144 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
199, 18mpcom 36 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
2019ad2antrr 488 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
219simpld 112 . . . . . . . . . . . . . . . 16 (𝐴<P 𝐵𝐴P)
2221ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝐴P)
2322adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴P)
24 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2524simpld 112 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 ∈ (1st𝐴))
2625adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 ∈ (1st𝐴))
27 simprrl 539 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐴))
28 prop 7537 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
29 prltlu 7549 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3028, 29syl3an1 1282 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3123, 26, 27, 30syl3anc 1249 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑡)
32 simplll 533 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simprrr 540 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (1st𝐵))
34 simplrl 535 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝐵))
35 prltlu 7549 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3612, 35syl3an1 1282 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3732, 33, 34, 36syl3anc 1249 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 <Q 𝑠)
38 ltsonq 7460 . . . . . . . . . . . . . 14 <Q Or Q
39 ltrelnq 7427 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4038, 39sotri 5062 . . . . . . . . . . . . 13 ((𝑦 <Q 𝑡𝑡 <Q 𝑠) → 𝑦 <Q 𝑠)
4131, 37, 40syl2anc 411 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑠)
4220, 41rexlimddv 2616 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 <Q 𝑠)
43 elprnql 7543 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4428, 43sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4522, 25, 44syl2anc 411 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦Q)
46 elprnqu 7544 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4712, 46sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4847ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑠Q)
49 ltexnqq 7470 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5045, 48, 49syl2anc 411 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5142, 50mpbid 147 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠)
52 simprr 531 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) = 𝑠)
53 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 <Q (𝑦 +Q 𝑟))
5452, 53eqbrtrd 4052 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
55 simprl 529 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞Q)
56 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑟Q)
5756adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑟Q)
5845adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦Q)
59 ltanqg 7462 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6055, 57, 58, 59syl3anc 1249 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6154, 60mpbird 167 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞 <Q 𝑟)
6225adantr 276 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦 ∈ (1st𝐴))
63 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 ∈ (2nd𝐵))
6452, 63eqeltrd 2270 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) ∈ (2nd𝐵))
6562, 64jca 306 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))
6661, 55, 65jca32 310 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
6766expr 375 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ 𝑞Q) → ((𝑦 +Q 𝑞) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6867reximdva 2596 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (∃𝑞Q (𝑦 +Q 𝑞) = 𝑠 → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6951, 68mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7016, 69rexlimddv 2616 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7170eximi 1611 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
727, 71sylbir 135 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
73 rexcom4 2783 . . . . . 6 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7472, 73sylibr 134 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
75 19.42v 1918 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
76 19.42v 1918 . . . . . . . 8 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
7776anbi2i 457 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7875, 77bitri 184 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7978rexbii 2501 . . . . 5 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8074, 79sylib 122 . . . 4 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
811ltexprlemelu 7661 . . . . . 6 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
8281anbi2i 457 . . . . 5 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8382rexbii 2501 . . . 4 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8480, 83sylibr 134 . . 3 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
853, 84sylanr2 405 . 2 ((𝐴<P 𝐵 ∧ (𝑟Q𝑟 ∈ (2nd𝐶))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
86853impb 1201 1 ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wrex 2473  {crab 2476  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Qcnq 7342   +Q cplq 7344   <Q cltq 7347  Pcnp 7353  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-ltnqqs 7415  df-inp 7528  df-iltp 7532
This theorem is referenced by:  ltexprlemrnd  7667
  Copyright terms: Public domain W3C validator