ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1 GIF version

Theorem odd2np1 12379
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem odd2np1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 9470 . . . 4 2 ∈ ℤ
2 divides 12295 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
31, 2mpan 424 . . 3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
43notbid 671 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
5 elznn0 9457 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6 odd2np1lem 12378 . . . . . 6 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
76adantl 277 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8 odd2np1lem 12378 . . . . . . 7 (-𝑁 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁))
9 peano2z 9478 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
10 znegcl 9473 . . . . . . . . . . . . 13 ((𝑥 + 1) ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
119, 10syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
1211ad2antlr 489 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → -(𝑥 + 1) ∈ ℤ)
13 zcn 9447 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
14 2cn 9177 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
15 mulcl 8122 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
1614, 15mpan 424 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
17 peano2cn 8277 . . . . . . . . . . . . . . . . 17 ((2 · 𝑥) ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1816, 17syl 14 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1913, 18syl 14 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) ∈ ℂ)
2019adantl 277 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((2 · 𝑥) + 1) ∈ ℂ)
21 simpl 109 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
2221recnd 8171 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
23 negcon2 8395 . . . . . . . . . . . . . 14 ((((2 · 𝑥) + 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
2420, 22, 23syl2anc 411 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
25 eqcom 2231 . . . . . . . . . . . . . 14 (𝑁 = -((2 · 𝑥) + 1) ↔ -((2 · 𝑥) + 1) = 𝑁)
2614, 13, 15sylancr 414 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
27 ax-1cn 8088 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
2814, 27mulcli 8147 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) ∈ ℂ
29 addsubass 8352 . . . . . . . . . . . . . . . . . . . . . 22 (((2 · 𝑥) ∈ ℂ ∧ (2 · 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3028, 27, 29mp3an23 1363 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3126, 30syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
32 2t1e2 9260 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 1) = 2
3332oveq1i 6010 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · 1) − 1) = (2 − 1)
34 2m1e1 9224 . . . . . . . . . . . . . . . . . . . . . 22 (2 − 1) = 1
3533, 34eqtri 2250 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 1) − 1) = 1
3635oveq2i 6011 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑥) + ((2 · 1) − 1)) = ((2 · 𝑥) + 1)
3731, 36eqtr2di 2279 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = (((2 · 𝑥) + (2 · 1)) − 1))
38 adddi 8127 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3914, 27, 38mp3an13 1362 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4013, 39syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4140oveq1d 6015 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · (𝑥 + 1)) − 1) = (((2 · 𝑥) + (2 · 1)) − 1))
4237, 41eqtr4d 2265 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = ((2 · (𝑥 + 1)) − 1))
4342negeqd 8337 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = -((2 · (𝑥 + 1)) − 1))
449zcnd 9566 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℂ)
45 mulneg2 8538 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4614, 44, 45sylancr 414 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4746oveq1d 6015 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = (-(2 · (𝑥 + 1)) + 1))
48 mulcl 8122 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · (𝑥 + 1)) ∈ ℂ)
4914, 44, 48sylancr 414 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) ∈ ℂ)
50 negsubdi 8398 . . . . . . . . . . . . . . . . . . 19 (((2 · (𝑥 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5149, 27, 50sylancl 413 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5247, 51eqtr4d 2265 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = -((2 · (𝑥 + 1)) − 1))
5343, 52eqtr4d 2265 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5453adantl 277 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5554eqeq1d 2238 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-((2 · 𝑥) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5625, 55bitrid 192 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑁 = -((2 · 𝑥) + 1) ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5724, 56bitrd 188 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5857biimpa 296 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ((2 · -(𝑥 + 1)) + 1) = 𝑁)
59 oveq2 6008 . . . . . . . . . . . . . 14 (𝑛 = -(𝑥 + 1) → (2 · 𝑛) = (2 · -(𝑥 + 1)))
6059oveq1d 6015 . . . . . . . . . . . . 13 (𝑛 = -(𝑥 + 1) → ((2 · 𝑛) + 1) = ((2 · -(𝑥 + 1)) + 1))
6160eqeq1d 2238 . . . . . . . . . . . 12 (𝑛 = -(𝑥 + 1) → (((2 · 𝑛) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
6261rspcev 2907 . . . . . . . . . . 11 ((-(𝑥 + 1) ∈ ℤ ∧ ((2 · -(𝑥 + 1)) + 1) = 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6312, 58, 62syl2anc 411 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6463ex 115 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
6564rexlimdva 2648 . . . . . . . 8 (𝑁 ∈ ℝ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
66 znegcl 9473 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6766ad2antlr 489 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → -𝑦 ∈ ℤ)
68 zcn 9447 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
69 mulcl 8122 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) ∈ ℂ)
7068, 14, 69sylancl 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑦 · 2) ∈ ℂ)
71 recn 8128 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
72 negcon2 8395 . . . . . . . . . . . . . 14 (((𝑦 · 2) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
7370, 71, 72syl2anr 290 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
74 eqcom 2231 . . . . . . . . . . . . . 14 (𝑁 = -(𝑦 · 2) ↔ -(𝑦 · 2) = 𝑁)
75 mulneg1 8537 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (-𝑦 · 2) = -(𝑦 · 2))
7668, 14, 75sylancl 413 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → (-𝑦 · 2) = -(𝑦 · 2))
7776adantl 277 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (-𝑦 · 2) = -(𝑦 · 2))
7877eqeq1d 2238 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((-𝑦 · 2) = 𝑁 ↔ -(𝑦 · 2) = 𝑁))
7974, 78bitr4id 199 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑁 = -(𝑦 · 2) ↔ (-𝑦 · 2) = 𝑁))
8073, 79bitrd 188 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 ↔ (-𝑦 · 2) = 𝑁))
8180biimpa 296 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → (-𝑦 · 2) = 𝑁)
82 oveq1 6007 . . . . . . . . . . . . 13 (𝑘 = -𝑦 → (𝑘 · 2) = (-𝑦 · 2))
8382eqeq1d 2238 . . . . . . . . . . . 12 (𝑘 = -𝑦 → ((𝑘 · 2) = 𝑁 ↔ (-𝑦 · 2) = 𝑁))
8483rspcev 2907 . . . . . . . . . . 11 ((-𝑦 ∈ ℤ ∧ (-𝑦 · 2) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8567, 81, 84syl2anc 411 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8685ex 115 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8786rexlimdva 2648 . . . . . . . 8 (𝑁 ∈ ℝ → (∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8865, 87orim12d 791 . . . . . . 7 (𝑁 ∈ ℝ → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
898, 88syl5 32 . . . . . 6 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
9089imp 124 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
917, 90jaodan 802 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
925, 91sylbi 121 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
93 halfnz 9539 . . . 4 ¬ (1 / 2) ∈ ℤ
94 reeanv 2701 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
95 eqtr3 2249 . . . . . . 7 ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → ((2 · 𝑛) + 1) = (𝑘 · 2))
96 zcn 9447 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
97 mulcom 8124 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑘 · 2) = (2 · 𝑘))
9896, 14, 97sylancl 413 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 · 2) = (2 · 𝑘))
9998eqeq2d 2241 . . . . . . . . 9 (𝑘 ∈ ℤ → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10099adantl 277 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
101 mulcl 8122 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
10214, 96, 101sylancr 414 . . . . . . . . . 10 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
103 zcn 9447 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
104 mulcl 8122 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
10514, 103, 104sylancr 414 . . . . . . . . . 10 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
106 subadd 8345 . . . . . . . . . . 11 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10727, 106mp3an3 1360 . . . . . . . . . 10 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
108102, 105, 107syl2anr 290 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
109 subcl 8341 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑘𝑛) ∈ ℂ)
110 2ap0 9199 . . . . . . . . . . . . . . . 16 2 # 0
11114, 110pm3.2i 272 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 # 0)
112 eqcom 2231 . . . . . . . . . . . . . . . 16 ((𝑘𝑛) = (1 / 2) ↔ (1 / 2) = (𝑘𝑛))
113 divmulap 8818 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((1 / 2) = (𝑘𝑛) ↔ (2 · (𝑘𝑛)) = 1))
114112, 113bitrid 192 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
11527, 111, 114mp3an13 1362 . . . . . . . . . . . . . 14 ((𝑘𝑛) ∈ ℂ → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
116109, 115syl 14 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
117116ancoms 268 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
118 subdi 8527 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
11914, 118mp3an1 1358 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
120119ancoms 268 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
121120eqeq1d 2238 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑘𝑛)) = 1 ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
122117, 121bitrd 188 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
123103, 96, 122syl2an 289 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
124 zsubcl 9483 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑘𝑛) ∈ ℤ)
125 eleq1 2292 . . . . . . . . . . . 12 ((𝑘𝑛) = (1 / 2) → ((𝑘𝑛) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
126124, 125syl5ibcom 155 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
127126ancoms 268 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
128123, 127sylbird 170 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 → (1 / 2) ∈ ℤ))
129108, 128sylbird 170 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (2 · 𝑘) → (1 / 2) ∈ ℤ))
130100, 129sylbid 150 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) → (1 / 2) ∈ ℤ))
13195, 130syl5 32 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ))
132131rexlimivv 2654 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13394, 132sylbir 135 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13493, 133mto 666 . . 3 ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
135 df-xor 1418 . . . . 5 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ⊻ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ↔ ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
136 xorbin 1426 . . . . 5 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ⊻ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
137135, 136sylbir 135 . . . 4 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
138137bicomd 141 . . 3 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) → (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
13992, 134, 138sylancl 413 . 2 (𝑁 ∈ ℤ → (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1404, 139bitrd 188 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wxo 1417  wcel 2200  wrex 2509   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000  cmin 8313  -cneg 8314   # cap 8724   / cdiv 8815  2c2 9157  0cn0 9365  cz 9442  cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-dvds 12294
This theorem is referenced by:  oddm1even  12381  oexpneg  12383  oddnn02np1  12386  2tp1odd  12390  sqoddm1div8z  12392  ltoddhalfle  12399  halfleoddlt  12400  opoe  12401  omoe  12402  opeo  12403  omeo  12404  m1expo  12406  m1exp1  12407  flodddiv4  12442  lgsquadlem1  15750
  Copyright terms: Public domain W3C validator