Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexrsb Structured version   Visualization version   GIF version

Theorem rexrsb 46108
Description: An equivalent expression for restricted existence, analogous to exsb 2353. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
rexrsb (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexrsb
StepHypRef Expression
1 rexsb 46107 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑))
2 alral 3073 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝐴 (𝑥 = 𝑦𝜑))
3 df-ral 3060 . . . . . 6 (∀𝑥𝐴 (𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥𝐴 → (𝑥 = 𝑦𝜑)))
4 19.27v 1991 . . . . . . . 8 (∀𝑥((𝑥𝐴 → (𝑥 = 𝑦𝜑)) ∧ 𝑦𝐴) ↔ (∀𝑥(𝑥𝐴 → (𝑥 = 𝑦𝜑)) ∧ 𝑦𝐴))
5 pm2.04 90 . . . . . . . . . . 11 ((𝑥𝐴 → (𝑥 = 𝑦𝜑)) → (𝑥 = 𝑦 → (𝑥𝐴𝜑)))
6 eleq1w 2814 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76biimprd 247 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑦𝐴𝑥𝐴))
87imim1d 82 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) → (𝑦𝐴𝜑)))
98a2i 14 . . . . . . . . . . 11 ((𝑥 = 𝑦 → (𝑥𝐴𝜑)) → (𝑥 = 𝑦 → (𝑦𝐴𝜑)))
10 pm2.04 90 . . . . . . . . . . 11 ((𝑥 = 𝑦 → (𝑦𝐴𝜑)) → (𝑦𝐴 → (𝑥 = 𝑦𝜑)))
115, 9, 103syl 18 . . . . . . . . . 10 ((𝑥𝐴 → (𝑥 = 𝑦𝜑)) → (𝑦𝐴 → (𝑥 = 𝑦𝜑)))
1211imp 405 . . . . . . . . 9 (((𝑥𝐴 → (𝑥 = 𝑦𝜑)) ∧ 𝑦𝐴) → (𝑥 = 𝑦𝜑))
1312alimi 1811 . . . . . . . 8 (∀𝑥((𝑥𝐴 → (𝑥 = 𝑦𝜑)) ∧ 𝑦𝐴) → ∀𝑥(𝑥 = 𝑦𝜑))
144, 13sylbir 234 . . . . . . 7 ((∀𝑥(𝑥𝐴 → (𝑥 = 𝑦𝜑)) ∧ 𝑦𝐴) → ∀𝑥(𝑥 = 𝑦𝜑))
1514ex 411 . . . . . 6 (∀𝑥(𝑥𝐴 → (𝑥 = 𝑦𝜑)) → (𝑦𝐴 → ∀𝑥(𝑥 = 𝑦𝜑)))
163, 15sylbi 216 . . . . 5 (∀𝑥𝐴 (𝑥 = 𝑦𝜑) → (𝑦𝐴 → ∀𝑥(𝑥 = 𝑦𝜑)))
1716com12 32 . . . 4 (𝑦𝐴 → (∀𝑥𝐴 (𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
182, 17impbid2 225 . . 3 (𝑦𝐴 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝐴 (𝑥 = 𝑦𝜑)))
1918rexbiia 3090 . 2 (∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑦𝐴𝑥𝐴 (𝑥 = 𝑦𝜑))
201, 19bitri 274 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1537  wcel 2104  wral 3059  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-10 2135  ax-11 2152  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ex 1780  df-nf 1784  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069
This theorem is referenced by:  2rexrsb  46110
  Copyright terms: Public domain W3C validator