Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1863. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1791 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1863 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1787 df-nf 1791 |
This theorem is referenced by: nfnan 1907 nfor 1911 nfnaewOLD 2150 nfa1 2152 nfna1 2153 nfan1 2197 19.32 2230 nfex 2322 cbvexv1 2343 cbvex2v 2346 cbvex 2401 cbvex2 2414 nfnae 2436 axc14 2465 euor 2615 euor2 2617 nfne 3047 nfnel 3058 cbvrexfw 3369 cbvrexf 3371 spcimegf 3528 spcegf 3530 spc2d 3540 cbvrexcsf 3883 nfdif 4065 rabsnifsb 4664 0nelopabOLD 5482 nfpo 5509 nffr 5564 rexxpf 5755 boxcutc 8712 nfoi 9251 rabssnn0fi 13704 fsuppmapnn0fiubex 13710 sumodd 16095 fprodex01 31135 ordtconnlem1 31870 esumrnmpt2 32032 ddemeas 32200 bnj1388 33009 bnj1398 33010 bnj1445 33020 bnj1449 33024 nosupbnd1 33913 nosupbnd2 33915 noinfbnd1 33928 noinfbnd2 33930 finxpreclem6 35563 wl-nfnae1 35683 cdlemefs32sn1aw 38424 ss2iundf 41237 ax6e2ndeqALT 42521 uzwo4 42571 eliin2f 42624 stoweidlem55 43567 stoweidlem59 43571 etransclem32 43778 salexct 43844 sge0f1o 43891 incsmflem 44245 decsmflem 44269 r19.32 44558 |
Copyright terms: Public domain | W3C validator |