![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1855. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1855 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfnan 1899 nfor 1903 nfnaewOLD 2150 nfa1 2152 nfna1 2153 nfan1 2201 19.32 2234 nfex 2328 cbvexv1 2348 cbvex2v 2350 cbvex 2407 cbvex2 2420 nfnae 2442 axc14 2471 euor 2614 euor2 2616 nfne 3049 nfnel 3060 cbvrexfw 3311 cbvrexf 3369 ceqsex 3540 spcimegf 3563 spcegf 3605 spc2d 3615 cbvrexcsf 3967 nfdif 4152 nfdifOLD 4153 rabsnifsb 4747 0nelopabOLD 5587 nfpo 5613 nffr 5673 rexxpf 5872 boxcutc 8999 nfoi 9583 rabssnn0fi 14037 fsuppmapnn0fiubex 14043 sumodd 16436 nosupbnd1 27777 nosupbnd2 27779 noinfbnd1 27792 noinfbnd2 27794 fprodex01 32829 ordtconnlem1 33870 esumrnmpt2 34032 ddemeas 34200 bnj1388 35009 bnj1398 35010 bnj1445 35020 bnj1449 35024 finxpreclem6 37362 wl-nfnae1 37482 cdlemefs32sn1aw 40371 ss2iundf 43621 ax6e2ndeqALT 44902 uzwo4 44955 eliin2f 45006 stoweidlem55 45976 stoweidlem59 45980 etransclem32 46187 salexct 46255 sge0f1o 46303 incsmflem 46662 decsmflem 46687 r19.32 47013 |
Copyright terms: Public domain | W3C validator |