| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version | ||
| Description: Inference associated with nfnt 1856. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nfor 1904 nfa1 2152 nfna1 2153 nfan1 2201 19.32 2234 nfex 2323 cbvexv1 2340 cbvex2v 2342 cbvex 2397 cbvex2 2410 nfnae 2432 axc14 2461 euor 2604 euor2 2606 nfne 3026 nfnel 3037 cbvrexfw 3270 cbvrexf 3324 ceqsex 3485 spcimegf 3506 spcegf 3547 spc2d 3557 cbvrexcsf 3894 nfdif 4080 nfdifOLD 4081 rabsnifsb 4674 nfpo 5533 nffr 5592 rexxpf 5790 boxcutc 8868 nfoi 9406 rabssnn0fi 13893 fsuppmapnn0fiubex 13899 sumodd 16299 nosupbnd1 27624 nosupbnd2 27626 noinfbnd1 27639 noinfbnd2 27641 fprodex01 32770 ordtconnlem1 33891 esumrnmpt2 34035 ddemeas 34203 bnj1388 35000 bnj1398 35001 bnj1445 35011 bnj1449 35015 finxpreclem6 37370 wl-nfnae1 37502 cdlemefs32sn1aw 40393 ss2iundf 43632 ax6e2ndeqALT 44904 uzwo4 45031 eliin2f 45082 stoweidlem55 46036 stoweidlem59 46040 etransclem32 46247 salexct 46315 sge0f1o 46363 incsmflem 46722 decsmflem 46747 r19.32 47082 |
| Copyright terms: Public domain | W3C validator |