| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version | ||
| Description: Inference associated with nfnt 1856. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nfor 1904 nfa1 2152 nfna1 2153 nfan1 2201 19.32 2234 nfex 2325 cbvexv1 2344 cbvex2v 2346 cbvex 2404 cbvex2 2417 nfnae 2439 axc14 2468 euor 2611 euor2 2613 nfne 3034 nfnel 3045 cbvrexfw 3289 cbvrexf 3345 ceqsex 3514 spcimegf 3535 spcegf 3576 spc2d 3586 cbvrexcsf 3922 nfdif 4109 nfdifOLD 4110 rabsnifsb 4703 nfpo 5572 nffr 5632 rexxpf 5832 boxcutc 8960 nfoi 9533 rabssnn0fi 14009 fsuppmapnn0fiubex 14015 sumodd 16412 nosupbnd1 27683 nosupbnd2 27685 noinfbnd1 27698 noinfbnd2 27700 fprodex01 32809 ordtconnlem1 33960 esumrnmpt2 34104 ddemeas 34272 bnj1388 35069 bnj1398 35070 bnj1445 35080 bnj1449 35084 finxpreclem6 37419 wl-nfnae1 37551 cdlemefs32sn1aw 40438 ss2iundf 43650 ax6e2ndeqALT 44922 uzwo4 45044 eliin2f 45095 stoweidlem55 46051 stoweidlem59 46055 etransclem32 46262 salexct 46330 sge0f1o 46378 incsmflem 46737 decsmflem 46762 r19.32 47094 |
| Copyright terms: Public domain | W3C validator |