Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1859. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1859 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfnan 1903 nfor 1907 nfnaewOLD 2146 nfa1 2148 nfna1 2149 nfan1 2193 19.32 2226 nfex 2318 cbvexv1 2339 cbvex2v 2342 cbvex 2399 cbvex2 2412 nfnae 2434 axc14 2463 euor 2613 euor2 2615 nfne 3045 nfnel 3056 cbvrexfw 3370 cbvrexf 3372 spcimegf 3529 spcegf 3531 spc2d 3541 cbvrexcsf 3878 nfdif 4060 rabsnifsb 4658 0nelopabOLD 5481 nfpo 5508 nffr 5563 rexxpf 5756 boxcutc 8729 nfoi 9273 rabssnn0fi 13706 fsuppmapnn0fiubex 13712 sumodd 16097 fprodex01 31139 ordtconnlem1 31874 esumrnmpt2 32036 ddemeas 32204 bnj1388 33013 bnj1398 33014 bnj1445 33024 bnj1449 33028 nosupbnd1 33917 nosupbnd2 33919 noinfbnd1 33932 noinfbnd2 33934 finxpreclem6 35567 wl-nfnae1 35687 cdlemefs32sn1aw 38428 ss2iundf 41267 ax6e2ndeqALT 42551 uzwo4 42601 eliin2f 42654 stoweidlem55 43596 stoweidlem59 43600 etransclem32 43807 salexct 43873 sge0f1o 43920 incsmflem 44277 decsmflem 44301 r19.32 44590 |
Copyright terms: Public domain | W3C validator |