![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1854. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1781 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1854 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1777 df-nf 1781 |
This theorem is referenced by: nfnan 1898 nfor 1902 nfa1 2149 nfna1 2150 nfan1 2198 19.32 2231 nfex 2323 cbvexv1 2343 cbvex2v 2345 cbvex 2402 cbvex2 2415 nfnae 2437 axc14 2466 euor 2609 euor2 2611 nfne 3041 nfnel 3052 cbvrexfw 3303 cbvrexf 3359 ceqsex 3528 spcimegf 3551 spcegf 3592 spc2d 3602 cbvrexcsf 3954 nfdif 4139 nfdifOLD 4140 rabsnifsb 4727 nfpo 5603 nffr 5662 rexxpf 5861 boxcutc 8980 nfoi 9552 rabssnn0fi 14024 fsuppmapnn0fiubex 14030 sumodd 16422 nosupbnd1 27774 nosupbnd2 27776 noinfbnd1 27789 noinfbnd2 27791 fprodex01 32832 ordtconnlem1 33885 esumrnmpt2 34049 ddemeas 34217 bnj1388 35026 bnj1398 35027 bnj1445 35037 bnj1449 35041 finxpreclem6 37379 wl-nfnae1 37509 cdlemefs32sn1aw 40397 ss2iundf 43649 ax6e2ndeqALT 44929 uzwo4 44993 eliin2f 45044 stoweidlem55 46011 stoweidlem59 46015 etransclem32 46222 salexct 46290 sge0f1o 46338 incsmflem 46697 decsmflem 46722 r19.32 47048 |
Copyright terms: Public domain | W3C validator |