Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1860. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1860 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfnan 1904 nfor 1908 nfnaewOLD 2148 nfa1 2150 nfna1 2151 nfan1 2196 19.32 2229 nfex 2322 cbvexv1 2341 cbvex2v 2344 cbvex 2399 cbvex2 2412 nfnae 2434 axc14 2463 euor 2613 euor2 2615 nfne 3044 nfnel 3055 cbvrexfw 3360 cbvrexf 3362 spcimegf 3519 spcegf 3521 spc2d 3531 cbvrexcsf 3874 nfdif 4056 rabsnifsb 4655 0nelopabOLD 5472 nfpo 5499 nffr 5554 rexxpf 5745 boxcutc 8687 nfoi 9203 rabssnn0fi 13634 fsuppmapnn0fiubex 13640 sumodd 16025 fprodex01 31041 ordtconnlem1 31776 esumrnmpt2 31936 ddemeas 32104 bnj1388 32913 bnj1398 32914 bnj1445 32924 bnj1449 32928 nosupbnd1 33844 nosupbnd2 33846 noinfbnd1 33859 noinfbnd2 33861 finxpreclem6 35494 wl-nfnae1 35614 cdlemefs32sn1aw 38355 ss2iundf 41156 ax6e2ndeqALT 42440 uzwo4 42490 eliin2f 42543 stoweidlem55 43486 stoweidlem59 43490 etransclem32 43697 salexct 43763 sge0f1o 43810 incsmflem 44164 decsmflem 44188 r19.32 44477 |
Copyright terms: Public domain | W3C validator |