![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1859. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1786 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1859 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1782 df-nf 1786 |
This theorem is referenced by: nfnan 1903 nfor 1907 nfnaewOLD 2146 nfa1 2148 nfna1 2149 nfan1 2193 19.32 2226 nfex 2317 cbvexv1 2338 cbvex2v 2340 cbvex 2398 cbvex2 2411 nfnae 2433 axc14 2462 euor 2607 euor2 2609 nfne 3043 nfnel 3054 cbvrexfw 3302 cbvrexf 3357 ceqsex 3523 spcimegf 3580 spcegf 3582 spc2d 3592 cbvrexcsf 3939 nfdif 4125 rabsnifsb 4726 0nelopabOLD 5568 nfpo 5593 nffr 5650 rexxpf 5847 boxcutc 8934 nfoi 9508 rabssnn0fi 13950 fsuppmapnn0fiubex 13956 sumodd 16330 nosupbnd1 27214 nosupbnd2 27216 noinfbnd1 27229 noinfbnd2 27231 fprodex01 32026 ordtconnlem1 32899 esumrnmpt2 33061 ddemeas 33229 bnj1388 34039 bnj1398 34040 bnj1445 34050 bnj1449 34054 finxpreclem6 36272 wl-nfnae1 36392 cdlemefs32sn1aw 39280 ss2iundf 42400 ax6e2ndeqALT 43682 uzwo4 43730 eliin2f 43783 stoweidlem55 44761 stoweidlem59 44765 etransclem32 44972 salexct 45040 sge0f1o 45088 incsmflem 45447 decsmflem 45472 r19.32 45796 |
Copyright terms: Public domain | W3C validator |