| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version | ||
| Description: Inference associated with nfnt 1856. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nfor 1904 nfa1 2152 nfna1 2153 nfan1 2201 19.32 2234 nfex 2323 cbvexv1 2340 cbvex2v 2342 cbvex 2397 cbvex2 2410 nfnae 2432 axc14 2461 euor 2604 euor2 2606 nfne 3026 nfnel 3037 cbvrexfw 3279 cbvrexf 3335 ceqsex 3496 spcimegf 3517 spcegf 3558 spc2d 3568 cbvrexcsf 3905 nfdif 4092 nfdifOLD 4093 rabsnifsb 4686 nfpo 5552 nffr 5611 rexxpf 5811 boxcutc 8914 nfoi 9467 rabssnn0fi 13951 fsuppmapnn0fiubex 13957 sumodd 16358 nosupbnd1 27626 nosupbnd2 27628 noinfbnd1 27641 noinfbnd2 27643 fprodex01 32750 ordtconnlem1 33914 esumrnmpt2 34058 ddemeas 34226 bnj1388 35023 bnj1398 35024 bnj1445 35034 bnj1449 35038 finxpreclem6 37384 wl-nfnae1 37516 cdlemefs32sn1aw 40408 ss2iundf 43648 ax6e2ndeqALT 44920 uzwo4 45047 eliin2f 45098 stoweidlem55 46053 stoweidlem59 46057 etransclem32 46264 salexct 46332 sge0f1o 46380 incsmflem 46739 decsmflem 46764 r19.32 47096 |
| Copyright terms: Public domain | W3C validator |