| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version | ||
| Description: Inference associated with nfnt 1856. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nfor 1904 nfa1 2152 nfna1 2153 nfan1 2201 19.32 2234 nfex 2323 cbvexv1 2340 cbvex2v 2342 cbvex 2397 cbvex2 2410 nfnae 2432 axc14 2461 euor 2604 euor2 2606 nfne 3026 nfnel 3037 cbvrexfw 3277 cbvrexf 3332 ceqsex 3493 spcimegf 3514 spcegf 3555 spc2d 3565 cbvrexcsf 3902 nfdif 4088 nfdifOLD 4089 rabsnifsb 4682 nfpo 5545 nffr 5604 rexxpf 5801 boxcutc 8891 nfoi 9443 rabssnn0fi 13927 fsuppmapnn0fiubex 13933 sumodd 16334 nosupbnd1 27659 nosupbnd2 27661 noinfbnd1 27674 noinfbnd2 27676 fprodex01 32800 ordtconnlem1 33907 esumrnmpt2 34051 ddemeas 34219 bnj1388 35016 bnj1398 35017 bnj1445 35027 bnj1449 35031 finxpreclem6 37377 wl-nfnae1 37509 cdlemefs32sn1aw 40401 ss2iundf 43641 ax6e2ndeqALT 44913 uzwo4 45040 eliin2f 45091 stoweidlem55 46046 stoweidlem59 46050 etransclem32 46257 salexct 46325 sge0f1o 46373 incsmflem 46732 decsmflem 46757 r19.32 47092 |
| Copyright terms: Public domain | W3C validator |