| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version | ||
| Description: Inference associated with nfnt 1856. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1856 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfnan 1900 nfor 1904 nfa1 2152 nfna1 2153 nfan1 2201 19.32 2234 nfex 2323 cbvexv1 2340 cbvex2v 2342 cbvex 2397 cbvex2 2410 nfnae 2432 axc14 2461 euor 2604 euor2 2606 nfne 3026 nfnel 3037 cbvrexfw 3277 cbvrexf 3332 ceqsex 3493 spcimegf 3514 spcegf 3555 spc2d 3565 cbvrexcsf 3902 nfdif 4088 nfdifOLD 4089 rabsnifsb 4682 nfpo 5545 nffr 5604 rexxpf 5801 boxcutc 8891 nfoi 9443 rabssnn0fi 13927 fsuppmapnn0fiubex 13933 sumodd 16334 nosupbnd1 27602 nosupbnd2 27604 noinfbnd1 27617 noinfbnd2 27619 fprodex01 32723 ordtconnlem1 33887 esumrnmpt2 34031 ddemeas 34199 bnj1388 34996 bnj1398 34997 bnj1445 35007 bnj1449 35011 finxpreclem6 37357 wl-nfnae1 37489 cdlemefs32sn1aw 40381 ss2iundf 43621 ax6e2ndeqALT 44893 uzwo4 45020 eliin2f 45071 stoweidlem55 46026 stoweidlem59 46030 etransclem32 46237 salexct 46305 sge0f1o 46353 incsmflem 46712 decsmflem 46737 r19.32 47072 |
| Copyright terms: Public domain | W3C validator |