| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version | ||
| Description: Inference associated with nfnt 1857. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1785 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1857 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfnan 1901 nfor 1905 nfa1 2154 nfna1 2155 nfan1 2203 19.32 2236 nfex 2325 cbvexv1 2342 cbvex2v 2344 cbvex 2399 cbvex2 2412 nfnae 2434 axc14 2463 euor 2606 euor2 2608 nfne 3029 nfnel 3040 cbvrexfw 3273 cbvrexf 3327 ceqsex 3485 spcimegf 3504 spcegf 3542 spc2d 3552 cbvrexcsf 3888 nfdif 4076 nfdifOLD 4077 rabsnifsb 4672 nfpo 5528 nffr 5587 rexxpf 5786 boxcutc 8865 nfoi 9400 rabssnn0fi 13893 fsuppmapnn0fiubex 13899 sumodd 16299 nosupbnd1 27653 nosupbnd2 27655 noinfbnd1 27668 noinfbnd2 27670 fprodex01 32808 ordtconnlem1 33937 esumrnmpt2 34081 ddemeas 34249 bnj1388 35045 bnj1398 35046 bnj1445 35056 bnj1449 35060 finxpreclem6 37438 wl-nfnae1 37570 cdlemefs32sn1aw 40461 ss2iundf 43700 ax6e2ndeqALT 44971 uzwo4 45098 eliin2f 45149 stoweidlem55 46101 stoweidlem59 46105 etransclem32 46312 salexct 46380 sge0f1o 46428 incsmflem 46787 decsmflem 46812 r19.32 47137 |
| Copyright terms: Public domain | W3C validator |