![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfn | Structured version Visualization version GIF version |
Description: Inference associated with nfnt 1860. (Contributed by Mario Carneiro, 11-Aug-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1860 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-or 847 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfnan 1904 nfor 1908 nfnaewOLD 2147 nfa1 2149 nfna1 2150 nfan1 2194 19.32 2227 nfex 2318 cbvexv1 2339 cbvex2v 2341 cbvex 2399 cbvex2 2412 nfnae 2434 axc14 2463 euor 2608 euor2 2610 nfne 3044 nfnel 3055 cbvrexfw 3303 cbvrexf 3358 ceqsex 3524 spcimegf 3581 spcegf 3583 spc2d 3593 cbvrexcsf 3940 nfdif 4126 rabsnifsb 4727 0nelopabOLD 5569 nfpo 5594 nffr 5651 rexxpf 5848 boxcutc 8935 nfoi 9509 rabssnn0fi 13951 fsuppmapnn0fiubex 13957 sumodd 16331 nosupbnd1 27217 nosupbnd2 27219 noinfbnd1 27232 noinfbnd2 27234 fprodex01 32031 ordtconnlem1 32904 esumrnmpt2 33066 ddemeas 33234 bnj1388 34044 bnj1398 34045 bnj1445 34055 bnj1449 34059 finxpreclem6 36277 wl-nfnae1 36397 cdlemefs32sn1aw 39285 ss2iundf 42410 ax6e2ndeqALT 43692 uzwo4 43740 eliin2f 43793 stoweidlem55 44771 stoweidlem59 44775 etransclem32 44982 salexct 45050 sge0f1o 45098 incsmflem 45457 decsmflem 45482 r19.32 45806 |
Copyright terms: Public domain | W3C validator |