| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axbnd | Structured version Visualization version GIF version | ||
| Description: Axiom of Bundling (intuitionistic logic axiom ax-bnd). In classical logic, this and axi12 2701 are fairly straightforward consequences of axc9 2382. But in intuitionistic logic, it is not easy to add the extra ∀𝑥 to axi12 2701 and so we treat the two as separate axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Jim Kingdon, 22-Mar-2018.) (Proof shortened by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axbnd | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2433 | . . . . 5 ⊢ Ⅎ𝑥∀𝑧 𝑧 = 𝑥 | |
| 2 | nfae 2433 | . . . . 5 ⊢ Ⅎ𝑥∀𝑧 𝑧 = 𝑦 | |
| 3 | 1, 2 | nfor 1905 | . . . 4 ⊢ Ⅎ𝑥(∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) |
| 4 | 3 | 19.32 2236 | . . 3 ⊢ (∀𝑥((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| 5 | orass 921 | . . 3 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
| 6 | 4, 5 | bitri 275 | . 2 ⊢ (∀𝑥((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) |
| 7 | axi12 2701 | . . 3 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
| 8 | orass 921 | . . 3 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
| 9 | 7, 8 | mpbir 231 | . 2 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 10 | 6, 9 | mpgbi 1799 | 1 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |