MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinfnd Structured version   Visualization version   GIF version

Theorem axinfnd 10600
Description: A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.)
Assertion
Ref Expression
axinfnd 𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))

Proof of Theorem axinfnd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axinfndlem1 10599 . . . . . . 7 (∀𝑥 𝑤𝑧 → ∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))))
21ax-gen 1789 . . . . . 6 𝑤(∀𝑥 𝑤𝑧 → ∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))))
3 nfnae 2427 . . . . . . . 8 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 nfnae 2427 . . . . . . . 8 𝑦 ¬ ∀𝑦 𝑦 = 𝑧
53, 4nfan 1894 . . . . . . 7 𝑦(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
6 nfnae 2427 . . . . . . . . . 10 𝑥 ¬ ∀𝑦 𝑦 = 𝑥
7 nfnae 2427 . . . . . . . . . 10 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
86, 7nfan 1894 . . . . . . . . 9 𝑥(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
9 nfcvd 2898 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑤)
10 nfcvf 2926 . . . . . . . . . . 11 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
1110adantl 481 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑧)
129, 11nfeld 2908 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑤𝑧)
138, 12nfald 2315 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥 𝑤𝑧)
14 nfcvf 2926 . . . . . . . . . . . 12 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
1514adantr 480 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑥)
169, 15nfeld 2908 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑤𝑥)
17 nfnae 2427 . . . . . . . . . . . 12 𝑤 ¬ ∀𝑦 𝑦 = 𝑥
18 nfnae 2427 . . . . . . . . . . . 12 𝑤 ¬ ∀𝑦 𝑦 = 𝑧
1917, 18nfan 1894 . . . . . . . . . . 11 𝑤(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
20 nfnae 2427 . . . . . . . . . . . . . 14 𝑧 ¬ ∀𝑦 𝑦 = 𝑥
21 nfnae 2427 . . . . . . . . . . . . . 14 𝑧 ¬ ∀𝑦 𝑦 = 𝑧
2220, 21nfan 1894 . . . . . . . . . . . . 13 𝑧(¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧)
2311, 15nfeld 2908 . . . . . . . . . . . . . 14 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑧𝑥)
2412, 23nfand 1892 . . . . . . . . . . . . 13 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(𝑤𝑧𝑧𝑥))
2522, 24nfexd 2316 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑧(𝑤𝑧𝑧𝑥))
2616, 25nfimd 1889 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))
2719, 26nfald 2315 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))
2816, 27nfand 1892 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))))
298, 28nfexd 2316 . . . . . . . 8 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))))
3013, 29nfimd 1889 . . . . . . 7 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦(∀𝑥 𝑤𝑧 → ∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))))
31 nfcvd 2898 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑥𝑤)
32 nfcvf2 2927 . . . . . . . . . . . . 13 (¬ ∀𝑦 𝑦 = 𝑥𝑥𝑦)
3332adantr 480 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑥𝑦)
3431, 33nfeqd 2907 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑥 𝑤 = 𝑦)
358, 34nfan1 2185 . . . . . . . . . 10 𝑥((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦)
36 simpr 484 . . . . . . . . . . 11 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → 𝑤 = 𝑦)
3736eleq1d 2812 . . . . . . . . . 10 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (𝑤𝑧𝑦𝑧))
3835, 37albid 2207 . . . . . . . . 9 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∀𝑥 𝑤𝑧 ↔ ∀𝑥 𝑦𝑧))
3936eleq1d 2812 . . . . . . . . . . 11 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (𝑤𝑥𝑦𝑥))
40 nfcvd 2898 . . . . . . . . . . . . . . . . . 18 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑤)
41 nfcvf2 2927 . . . . . . . . . . . . . . . . . . 19 (¬ ∀𝑦 𝑦 = 𝑧𝑧𝑦)
4241adantl 481 . . . . . . . . . . . . . . . . . 18 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑦)
4340, 42nfeqd 2907 . . . . . . . . . . . . . . . . 17 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑦)
4422, 43nfan1 2185 . . . . . . . . . . . . . . . 16 𝑧((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦)
4537anbi1d 629 . . . . . . . . . . . . . . . 16 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((𝑤𝑧𝑧𝑥) ↔ (𝑦𝑧𝑧𝑥)))
4644, 45exbid 2208 . . . . . . . . . . . . . . 15 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∃𝑧(𝑤𝑧𝑧𝑥) ↔ ∃𝑧(𝑦𝑧𝑧𝑥)))
4739, 46imbi12d 344 . . . . . . . . . . . . . 14 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)) ↔ (𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
4847ex 412 . . . . . . . . . . . . 13 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → ((𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)) ↔ (𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
495, 26, 48cbvald 2400 . . . . . . . . . . . 12 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
5049adantr 480 . . . . . . . . . . 11 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
5139, 50anbi12d 630 . . . . . . . . . 10 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
5235, 51exbid 2208 . . . . . . . . 9 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → (∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))) ↔ ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
5338, 52imbi12d 344 . . . . . . . 8 (((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) ∧ 𝑤 = 𝑦) → ((∀𝑥 𝑤𝑧 → ∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))) ↔ (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))))
5453ex 412 . . . . . . 7 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑤 = 𝑦 → ((∀𝑥 𝑤𝑧 → ∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))) ↔ (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))))
555, 30, 54cbvald 2400 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑤(∀𝑥 𝑤𝑧 → ∃𝑥(𝑤𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))) ↔ ∀𝑦(∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))))
562, 55mpbii 232 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∀𝑦(∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
575619.21bi 2174 . . . 4 ((¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
5857ex 412 . . 3 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))))
59 nd1 10581 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
6059aecoms 2421 . . . 4 (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑦𝑧)
6160pm2.21d 121 . . 3 (∀𝑦 𝑦 = 𝑥 → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
62 nd3 10583 . . . 4 (∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑥 𝑦𝑧)
6362pm2.21d 121 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
6458, 61, 63pm2.61ii 183 . 2 (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
656419.35ri 1874 1 𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1531  wex 1773  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2365  ax-ext 2697  ax-sep 5292  ax-pr 5420  ax-reg 9586  ax-inf 9632
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-v 3470  df-un 3948  df-sn 4624  df-pr 4626
This theorem is referenced by:  zfcndinf  10612  axinfprim  35208
  Copyright terms: Public domain W3C validator