MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep1 Structured version   Visualization version   GIF version

Theorem axrep1 5206
Description: The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html. Equivalence is shown via the path ax-rep 5205 axrep1 5206 axrep2 5208 axrepnd 10281 zfcndrep 10301 = ax-rep 5205. (Contributed by NM, 19-Nov-2005.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-13 2372. (Revised by BJ, 31-May-2019.)
Assertion
Ref Expression
axrep1 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑)))
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)

Proof of Theorem axrep1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2123 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
21anbi1d 629 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑥𝑤𝜑) ↔ (𝑥𝑦𝜑)))
32exbidv 1925 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥(𝑥𝑤𝜑) ↔ ∃𝑥(𝑥𝑦𝜑)))
43bibi2d 342 . . . . . 6 (𝑤 = 𝑦 → ((𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑)) ↔ (𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑))))
54albidv 1924 . . . . 5 (𝑤 = 𝑦 → (∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑)) ↔ ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑))))
65exbidv 1925 . . . 4 (𝑤 = 𝑦 → (∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑)) ↔ ∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑))))
76imbi2d 340 . . 3 (𝑤 = 𝑦 → ((∀𝑥𝑦𝑧(𝜑𝑧 = 𝑦) → ∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑))) ↔ (∀𝑥𝑦𝑧(𝜑𝑧 = 𝑦) → ∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑)))))
8 ax-rep 5205 . . . 4 (∀𝑥𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
9 19.3v 1986 . . . . . . . 8 (∀𝑦𝜑𝜑)
109imbi1i 349 . . . . . . 7 ((∀𝑦𝜑𝑧 = 𝑦) ↔ (𝜑𝑧 = 𝑦))
1110albii 1823 . . . . . 6 (∀𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ ∀𝑧(𝜑𝑧 = 𝑦))
1211exbii 1851 . . . . 5 (∃𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ ∃𝑦𝑧(𝜑𝑧 = 𝑦))
1312albii 1823 . . . 4 (∀𝑥𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) ↔ ∀𝑥𝑦𝑧(𝜑𝑧 = 𝑦))
14 nfv 1918 . . . . . . 7 𝑥 𝑧𝑦
15 nfe1 2149 . . . . . . 7 𝑥𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)
1614, 15nfbi 1907 . . . . . 6 𝑥(𝑧𝑦 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
1716nfal 2321 . . . . 5 𝑥𝑧(𝑧𝑦 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑))
18 nfv 1918 . . . . 5 𝑦𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑))
19 elequ2 2123 . . . . . . 7 (𝑦 = 𝑥 → (𝑧𝑦𝑧𝑥))
209anbi2i 622 . . . . . . . . 9 ((𝑥𝑤 ∧ ∀𝑦𝜑) ↔ (𝑥𝑤𝜑))
2120exbii 1851 . . . . . . . 8 (∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑) ↔ ∃𝑥(𝑥𝑤𝜑))
2221a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑) ↔ ∃𝑥(𝑥𝑤𝜑)))
2319, 22bibi12d 345 . . . . . 6 (𝑦 = 𝑥 → ((𝑧𝑦 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑))))
2423albidv 1924 . . . . 5 (𝑦 = 𝑥 → (∀𝑧(𝑧𝑦 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑))))
2517, 18, 24cbvexv1 2341 . . . 4 (∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)) ↔ ∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑)))
268, 13, 253imtr3i 290 . . 3 (∀𝑥𝑦𝑧(𝜑𝑧 = 𝑦) → ∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤𝜑)))
277, 26chvarvv 2003 . 2 (∀𝑥𝑦𝑧(𝜑𝑧 = 𝑦) → ∃𝑥𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑)))
282719.35ri 1883 1 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-rep 5205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by:  axrep2  5208
  Copyright terms: Public domain W3C validator