| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfnae 2439 | . . . . . . . 8
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 | 
| 2 |  | nfnae 2439 | . . . . . . . 8
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 | 
| 3 | 1, 2 | nfan 1899 | . . . . . . 7
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 4 |  | nfcvf 2932 | . . . . . . . . . 10
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | 
| 5 | 4 | adantr 480 | . . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑦) | 
| 6 | 5 | nfcrd 2899 | . . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤 ∈ 𝑦) | 
| 7 |  | nfcvf 2932 | . . . . . . . . . 10
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝑧) | 
| 8 | 7 | adantl 481 | . . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧) | 
| 9 | 8 | nfcrd 2899 | . . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤 ∈ 𝑧) | 
| 10 | 6, 9 | nfbid 1902 | . . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧)) | 
| 11 |  | elequ1 2115 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | 
| 12 |  | elequ1 2115 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | 
| 13 | 11, 12 | bibi12d 345 | . . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧) ↔ (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧))) | 
| 14 | 13 | a1i 11 | . . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧) ↔ (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧)))) | 
| 15 | 3, 10, 14 | cbvald 2412 | . . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑤(𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧))) | 
| 16 |  | axextg 2710 | . . . . . 6
⊢
(∀𝑤(𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧) → 𝑦 = 𝑧) | 
| 17 | 15, 16 | biimtrrdi 254 | . . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧)) | 
| 18 |  | 19.8a 2181 | . . . . 5
⊢ (𝑦 = 𝑧 → ∃𝑥 𝑦 = 𝑧) | 
| 19 | 17, 18 | syl6 35 | . . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → ∃𝑥 𝑦 = 𝑧)) | 
| 20 | 19 | ex 412 | . . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → ∃𝑥 𝑦 = 𝑧))) | 
| 21 |  | ax6e 2388 | . . . . 5
⊢
∃𝑥 𝑥 = 𝑧 | 
| 22 |  | ax7 2015 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | 
| 23 | 22 | aleximi 1832 | . . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥 𝑥 = 𝑧 → ∃𝑥 𝑦 = 𝑧)) | 
| 24 | 21, 23 | mpi 20 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥 𝑦 = 𝑧) | 
| 25 | 24 | a1d 25 | . . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → ∃𝑥 𝑦 = 𝑧)) | 
| 26 |  | ax6e 2388 | . . . . 5
⊢
∃𝑥 𝑥 = 𝑦 | 
| 27 |  | ax7 2015 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) | 
| 28 |  | equcomi 2016 | . . . . . . 7
⊢ (𝑧 = 𝑦 → 𝑦 = 𝑧) | 
| 29 | 27, 28 | syl6 35 | . . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑦 = 𝑧)) | 
| 30 | 29 | aleximi 1832 | . . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥 𝑦 = 𝑧)) | 
| 31 | 26, 30 | mpi 20 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → ∃𝑥 𝑦 = 𝑧) | 
| 32 | 31 | a1d 25 | . . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → ∃𝑥 𝑦 = 𝑧)) | 
| 33 | 20, 25, 32 | pm2.61ii 183 | . 2
⊢
(∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → ∃𝑥 𝑦 = 𝑧) | 
| 34 | 33 | 19.35ri 1879 | 1
⊢
∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) |