![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spim | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 2408 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) |
Ref | Expression |
---|---|
spim.1 | ⊢ Ⅎ𝑥𝜓 |
spim.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spim | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spim.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ax6e 2404 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | spim.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | eximii 1937 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) |
5 | 1, 4 | 19.36i 2276 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1656 Ⅎwnf 1884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-12 2222 ax-13 2391 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 df-nf 1885 |
This theorem is referenced by: spimv 2411 chvar 2416 cbv3 2418 setrec2fun 43334 |
Copyright terms: Public domain | W3C validator |