MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spim Structured version   Visualization version   GIF version

Theorem spim 2387
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 2387 series of theorems requires that only one direction of the substitution hypothesis hold. Usage of this theorem is discouraged because it depends on ax-13 2372. See spimw 1974 for a version requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
spim.1 𝑥𝜓
spim.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spim (∀𝑥𝜑𝜓)

Proof of Theorem spim
StepHypRef Expression
1 spim.1 . 2 𝑥𝜓
2 ax6e 2383 . . 3 𝑥 𝑥 = 𝑦
3 spim.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3eximii 1839 . 2 𝑥(𝜑𝜓)
51, 419.36i 2224 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  spimv  2390  chvar  2395  cbv3  2397
  Copyright terms: Public domain W3C validator