![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of vtoclf 3576 as of 26-Jan-2025. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vtoclf.1 | ⊢ Ⅎ𝑥𝜓 |
vtoclf.2 | ⊢ 𝐴 ∈ V |
vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclfOLD | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | vtoclf.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | 2 | isseti 3506 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
4 | vtoclf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | biimpd 229 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
6 | 3, 5 | eximii 1835 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
7 | 1, 6 | 19.36i 2232 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
8 | vtoclf.4 | . 2 ⊢ 𝜑 | |
9 | 7, 8 | mpg 1795 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-clel 2819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |