|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtoclfOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of vtoclf 3564 as of 26-Jan-2025. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| vtoclf.1 | ⊢ Ⅎ𝑥𝜓 | 
| vtoclf.2 | ⊢ 𝐴 ∈ V | 
| vtoclf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtoclf.4 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| vtoclfOLD | ⊢ 𝜓 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtoclf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtoclf.2 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 3 | 2 | isseti 3498 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 | 
| 4 | vtoclf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimpd 229 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | 
| 6 | 3, 5 | eximii 1837 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | 
| 7 | 1, 6 | 19.36i 2231 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | 
| 8 | vtoclf.4 | . 2 ⊢ 𝜑 | |
| 9 | 7, 8 | mpg 1797 | 1 ⊢ 𝜓 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Vcvv 3480 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2816 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |