| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclf | Structured version Visualization version GIF version | ||
| Description: Remove dependency on ax-ext 2706, df-clab 2713 and df-cleq 2726 (and df-sb 2064 and df-v 3465) from vtoclf 3547. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vtoclf.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-vtoclf.s | ⊢ 𝐴 ∈ 𝑉 |
| bj-vtoclf.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| bj-vtoclf.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bj-vtoclf | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vtoclf.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | bj-vtoclf.s | . . . . 5 ⊢ 𝐴 ∈ 𝑉 | |
| 3 | 2 | bj-issetiv 36837 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 4 | bj-vtoclf.maj | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimpd 229 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | eximii 1836 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
| 7 | 1, 6 | 19.36i 2230 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 8 | bj-vtoclf.min | . 2 ⊢ 𝜑 | |
| 9 | 7, 8 | mpg 1796 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-clel 2808 |
| This theorem is referenced by: bj-vtocl 36876 |
| Copyright terms: Public domain | W3C validator |