MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndinf Structured version   Visualization version   GIF version

Theorem zfcndinf 10034
Description: Axiom of Infinity ax-inf 9095, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 5262 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
Assertion
Ref Expression
zfcndinf 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndinf
StepHypRef Expression
1 el 5262 . . 3 𝑤 𝑥𝑤
2 nfv 1911 . . . . . 6 𝑤 𝑥𝑦
3 nfe1 2150 . . . . . . . 8 𝑤𝑤(𝑥𝑤𝑤𝑦)
42, 3nfim 1893 . . . . . . 7 𝑤(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
54nfal 2338 . . . . . 6 𝑤𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
62, 5nfan 1896 . . . . 5 𝑤(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
76nfex 2339 . . . 4 𝑤𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
8 axinfnd 10022 . . . . 5 𝑦(𝑥𝑤 → (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
9819.37iv 1945 . . . 4 (𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
107, 9exlimi 2213 . . 3 (∃𝑤 𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
111, 10ax-mp 5 . 2 𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
12 elequ1 2117 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
13 elequ1 2117 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1413anbi1d 631 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑤𝑤𝑦) ↔ (𝑥𝑤𝑤𝑦)))
1514exbidv 1918 . . . . . 6 (𝑧 = 𝑥 → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑥𝑤𝑤𝑦)))
1612, 15imbi12d 347 . . . . 5 (𝑧 = 𝑥 → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1716cbvalvw 2039 . . . 4 (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
1817anbi2i 624 . . 3 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1918exbii 1844 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
2011, 19mpbir 233 1 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-13 2386  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-reg 9050  ax-inf 9095
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-dif 3938  df-un 3940  df-nul 4291  df-sn 4561  df-pr 4563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator