MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndinf Structured version   Visualization version   GIF version

Theorem zfcndinf 10506
Description: Axiom of Infinity ax-inf 9528, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing Theorem el 5380 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
Assertion
Ref Expression
zfcndinf 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndinf
StepHypRef Expression
1 el 5380 . . 3 𝑤 𝑥𝑤
2 nfv 1915 . . . . . 6 𝑤 𝑥𝑦
3 nfe1 2153 . . . . . . . 8 𝑤𝑤(𝑥𝑤𝑤𝑦)
42, 3nfim 1897 . . . . . . 7 𝑤(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
54nfal 2324 . . . . . 6 𝑤𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
62, 5nfan 1900 . . . . 5 𝑤(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
76nfex 2325 . . . 4 𝑤𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
8 axinfnd 10494 . . . . 5 𝑦(𝑥𝑤 → (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
9819.37iv 1949 . . . 4 (𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
107, 9exlimi 2220 . . 3 (∃𝑤 𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
111, 10ax-mp 5 . 2 𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
12 elequ1 2118 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
13 elequ1 2118 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1413anbi1d 631 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑤𝑤𝑦) ↔ (𝑥𝑤𝑤𝑦)))
1514exbidv 1922 . . . . . 6 (𝑧 = 𝑥 → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑥𝑤𝑤𝑦)))
1612, 15imbi12d 344 . . . . 5 (𝑧 = 𝑥 → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1716cbvalvw 2037 . . . 4 (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
1817anbi2i 623 . . 3 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1918exbii 1849 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
2011, 19mpbir 231 1 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703  ax-sep 5234  ax-pr 5370  ax-reg 9478  ax-inf 9528
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-cleq 2723  df-clel 2806  df-nfc 2881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator