MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndinf Structured version   Visualization version   GIF version

Theorem zfcndinf 9775
Description: Axiom of Infinity ax-inf 8832, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 5081 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
Assertion
Ref Expression
zfcndinf 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndinf
StepHypRef Expression
1 el 5081 . . 3 𝑤 𝑥𝑤
2 nfv 1957 . . . . . 6 𝑤 𝑥𝑦
3 nfe1 2143 . . . . . . . 8 𝑤𝑤(𝑥𝑤𝑤𝑦)
42, 3nfim 1943 . . . . . . 7 𝑤(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
54nfal 2298 . . . . . 6 𝑤𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
62, 5nfan 1946 . . . . 5 𝑤(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
76nfex 2299 . . . 4 𝑤𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
8 axinfnd 9763 . . . . 5 𝑦(𝑥𝑤 → (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
9819.37iv 1991 . . . 4 (𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
107, 9exlimi 2202 . . 3 (∃𝑤 𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
111, 10ax-mp 5 . 2 𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
12 elequ1 2113 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
13 elequ1 2113 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1413anbi1d 623 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑤𝑤𝑦) ↔ (𝑥𝑤𝑤𝑦)))
1514exbidv 1964 . . . . . 6 (𝑧 = 𝑥 → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑥𝑤𝑤𝑦)))
1612, 15imbi12d 336 . . . . 5 (𝑧 = 𝑥 → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1716cbvalvw 2085 . . . 4 (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
1817anbi2i 616 . . 3 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1918exbii 1892 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
2011, 19mpbir 223 1 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wal 1599   = wceq 1601  wex 1823  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-reg 8786  ax-inf 8832
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-v 3399  df-dif 3794  df-un 3796  df-nul 4141  df-sn 4398  df-pr 4400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator