![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnd | Structured version Visualization version GIF version |
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 7413), derived from the Collection Principle cp 9051. Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.) |
Ref | Expression |
---|---|
bnd | ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cp 9051 | . . 3 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) | |
2 | ralim 3130 | . . 3 ⊢ (∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) → (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑)) | |
3 | 1, 2 | eximii 1880 | . 2 ⊢ ∃𝑤(∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
4 | 3 | 19.37iv 1991 | 1 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1823 ∀wral 3090 ∃wrex 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-reg 8786 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-r1 8924 df-rank 8925 |
This theorem is referenced by: bnd2 9053 |
Copyright terms: Public domain | W3C validator |