MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd Structured version   Visualization version   GIF version

Theorem bnd 9909
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 7952), derived from the Collection Principle cp 9908. Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.)
Assertion
Ref Expression
bnd (∀𝑥𝑧𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑧,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bnd
StepHypRef Expression
1 cp 9908 . . 3 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
2 ralim 3081 . . 3 (∀𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑) → (∀𝑥𝑧𝑦𝜑 → ∀𝑥𝑧𝑦𝑤 𝜑))
31, 2eximii 1832 . 2 𝑤(∀𝑥𝑧𝑦𝜑 → ∀𝑥𝑧𝑦𝑤 𝜑)
4319.37iv 1945 1 (∀𝑥𝑧𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1774  wral 3056  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-reg 9609  ax-inf2 9658
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9781  df-rank 9782
This theorem is referenced by:  bnd2  9910
  Copyright terms: Public domain W3C validator