Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd Structured version   Visualization version   GIF version

Theorem bnd 9307
 Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 7640), derived from the Collection Principle cp 9306. Its strength lies in the rather profound fact that 𝜑(𝑥, 𝑦) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.)
Assertion
Ref Expression
bnd (∀𝑥𝑧𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑧,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bnd
StepHypRef Expression
1 cp 9306 . . 3 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
2 ralim 3130 . . 3 (∀𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑) → (∀𝑥𝑧𝑦𝜑 → ∀𝑥𝑧𝑦𝑤 𝜑))
31, 2eximii 1838 . 2 𝑤(∀𝑥𝑧𝑦𝜑 → ∀𝑥𝑧𝑦𝑤 𝜑)
4319.37iv 1949 1 (∀𝑥𝑧𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∃wex 1781  ∀wral 3106  ∃wrex 3107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-reg 9042  ax-inf2 9090 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-r1 9179  df-rank 9180 This theorem is referenced by:  bnd2  9308
 Copyright terms: Public domain W3C validator