Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relopabVD Structured version   Visualization version   GIF version

Theorem relopabVD 39886
Description: Virtual deduction proof of relopab 5450. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5450 is relopabVD 39886 without virtual deductions and was automatically derived from relopabVD 39886.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relopabVD Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem relopabVD
Dummy variables 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3387 . . . . . 6 𝑥 ∈ V
2 vex 3387 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 463 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5198 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
63biantru 526 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
76exbii 1944 . . . . . . . . 9 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
87exbii 1944 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
98abbii 2915 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
10 ax6ev 2074 . . . . . . . . . . . . . . 15 𝑢 𝑢 = 𝑥
11 equcom 2117 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥𝑥 = 𝑢)
1211exbii 1944 . . . . . . . . . . . . . . 15 (∃𝑢 𝑢 = 𝑥 ↔ ∃𝑢 𝑥 = 𝑢)
1310, 12mpbi 222 . . . . . . . . . . . . . 14 𝑢 𝑥 = 𝑢
14 ax6ev 2074 . . . . . . . . . . . . . . . . . . 19 𝑣 𝑣 = 𝑦
15 equcom 2117 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑦𝑦 = 𝑣)
1615exbii 1944 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 𝑣 = 𝑦 ↔ ∃𝑣 𝑦 = 𝑣)
1714, 16mpbi 222 . . . . . . . . . . . . . . . . . 18 𝑣 𝑦 = 𝑣
18 idn1 39549 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
19 opeq2 4593 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
2018, 19e1a 39611 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ▶   𝑥, 𝑦⟩ = ⟨𝑥, 𝑣   )
21 idn2 39597 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
22 opeq1 4592 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
2321, 22e2 39615 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑣⟩ = ⟨𝑢, 𝑣   )
24 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩))
2524biimprd 240 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩))
2620, 23, 25e12 39709 . . . . . . . . . . . . . . . . . . . . . 22 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑦⟩ = ⟨𝑢, 𝑣   )
27 eqeq2 2809 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑢, 𝑣⟩))
2827biimpd 221 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
2926, 28e2 39615 . . . . . . . . . . . . . . . . . . . . 21 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
3029in2 39589 . . . . . . . . . . . . . . . . . . . 20 (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
3130in1 39546 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3231eximi 1930 . . . . . . . . . . . . . . . . . 18 (∃𝑣 𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3317, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
343319.37iv 2044 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
35 19.37v 2092 . . . . . . . . . . . . . . . . 17 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3635biimpi 208 . . . . . . . . . . . . . . . 16 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3734, 36syl 17 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3837eximi 1930 . . . . . . . . . . . . . 14 (∃𝑢 𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3913, 38ax-mp 5 . . . . . . . . . . . . 13 𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
403919.37iv 2044 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4140eximi 1930 . . . . . . . . . . 11 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
42 19.9v 2080 . . . . . . . . . . . 12 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4342biimpi 208 . . . . . . . . . . 11 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4441, 43syl 17 . . . . . . . . . 10 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4544eximi 1930 . . . . . . . . 9 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
46 19.9v 2080 . . . . . . . . . 10 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4746biimpi 208 . . . . . . . . 9 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4845, 47syl 17 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4948ss2abi 3869 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
509, 49eqsstr3i 3831 . . . . . 6 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
51 vex 3387 . . . . . . . . . . 11 𝑢 ∈ V
52 vex 3387 . . . . . . . . . . 11 𝑣 ∈ V
5351, 52pm3.2i 463 . . . . . . . . . 10 (𝑢 ∈ V ∧ 𝑣 ∈ V)
5453biantru 526 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ ↔ (𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5554exbii 1944 . . . . . . . 8 (∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5655exbii 1944 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5756abbii 2915 . . . . . 6 {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
5850, 57sseqtri 3832 . . . . 5 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
59 df-opab 4905 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
60 df-opab 4905 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
6158, 59, 603sstr4i 3839 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
62 df-xp 5317 . . . . 5 (V × V) = {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
6362eqcomi 2807 . . . 4 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = (V × V)
6461, 63sseqtri 3832 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ (V × V)
655, 64sstri 3806 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
66 df-rel 5318 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V))
6766biimpri 220 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) → Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6865, 67e0a 39757 1 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wex 1875  wcel 2157  {cab 2784  Vcvv 3384  wss 3768  cop 4373  {copab 4904   × cxp 5309  Rel wrel 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-rab 3097  df-v 3386  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-opab 4905  df-xp 5317  df-rel 5318  df-vd1 39545  df-vd2 39553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator