Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relopabVD Structured version   Visualization version   GIF version

Theorem relopabVD 44890
Description: Virtual deduction proof of relopab 5787. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5787 is relopabVD 44890 without virtual deductions and was automatically derived from relopabVD 44890.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relopabVD Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem relopabVD
Dummy variables 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . . 6 𝑥 ∈ V
2 vex 3451 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 470 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5510 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
63biantru 529 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
76exbii 1848 . . . . . . . . 9 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
87exbii 1848 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
98abbii 2796 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
10 ax6ev 1969 . . . . . . . . . . . . . . 15 𝑢 𝑢 = 𝑥
11 equcom 2018 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥𝑥 = 𝑢)
1211exbii 1848 . . . . . . . . . . . . . . 15 (∃𝑢 𝑢 = 𝑥 ↔ ∃𝑢 𝑥 = 𝑢)
1310, 12mpbi 230 . . . . . . . . . . . . . 14 𝑢 𝑥 = 𝑢
14 ax6ev 1969 . . . . . . . . . . . . . . . . . . 19 𝑣 𝑣 = 𝑦
15 equcom 2018 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑦𝑦 = 𝑣)
1615exbii 1848 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 𝑣 = 𝑦 ↔ ∃𝑣 𝑦 = 𝑣)
1714, 16mpbi 230 . . . . . . . . . . . . . . . . . 18 𝑣 𝑦 = 𝑣
18 idn1 44564 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
19 opeq2 4838 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
2018, 19e1a 44617 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ▶   𝑥, 𝑦⟩ = ⟨𝑥, 𝑣   )
21 idn2 44603 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
22 opeq1 4837 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
2321, 22e2 44621 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑣⟩ = ⟨𝑢, 𝑣   )
24 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩))
2524biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩))
2620, 23, 25e12 44713 . . . . . . . . . . . . . . . . . . . . . 22 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑦⟩ = ⟨𝑢, 𝑣   )
27 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑢, 𝑣⟩))
2827biimpd 229 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
2926, 28e2 44621 . . . . . . . . . . . . . . . . . . . . 21 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
3029in2 44595 . . . . . . . . . . . . . . . . . . . 20 (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
3130in1 44561 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3231eximi 1835 . . . . . . . . . . . . . . . . . 18 (∃𝑣 𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3317, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
343319.37iv 1948 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
35 19.37v 1997 . . . . . . . . . . . . . . . . 17 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3635biimpi 216 . . . . . . . . . . . . . . . 16 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3734, 36syl 17 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3837eximi 1835 . . . . . . . . . . . . . 14 (∃𝑢 𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3913, 38ax-mp 5 . . . . . . . . . . . . 13 𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
403919.37iv 1948 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4140eximi 1835 . . . . . . . . . . 11 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
42 19.9v 1984 . . . . . . . . . . . 12 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4342biimpi 216 . . . . . . . . . . 11 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4441, 43syl 17 . . . . . . . . . 10 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4544eximi 1835 . . . . . . . . 9 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
46 19.9v 1984 . . . . . . . . . 10 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4746biimpi 216 . . . . . . . . 9 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4845, 47syl 17 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4948ss2abi 4030 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
509, 49eqsstrri 3994 . . . . . 6 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
51 vex 3451 . . . . . . . . . . 11 𝑢 ∈ V
52 vex 3451 . . . . . . . . . . 11 𝑣 ∈ V
5351, 52pm3.2i 470 . . . . . . . . . 10 (𝑢 ∈ V ∧ 𝑣 ∈ V)
5453biantru 529 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ ↔ (𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5554exbii 1848 . . . . . . . 8 (∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5655exbii 1848 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5756abbii 2796 . . . . . 6 {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
5850, 57sseqtri 3995 . . . . 5 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
59 df-opab 5170 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
60 df-opab 5170 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
6158, 59, 603sstr4i 3998 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
62 df-xp 5644 . . . . 5 (V × V) = {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
6362eqcomi 2738 . . . 4 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = (V × V)
6461, 63sseqtri 3995 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ (V × V)
655, 64sstri 3956 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
66 df-rel 5645 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V))
6766biimpri 228 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) → Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6865, 67e0a 44761 1 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3447  wss 3914  cop 4595  {copab 5169   × cxp 5636  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645  df-vd1 44560  df-vd2 44568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator