Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relopabVD Structured version   Visualization version   GIF version

Theorem relopabVD 44897
Description: Virtual deduction proof of relopab 5790. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5790 is relopabVD 44897 without virtual deductions and was automatically derived from relopabVD 44897.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relopabVD Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem relopabVD
Dummy variables 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . 6 𝑥 ∈ V
2 vex 3454 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 470 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5513 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
63biantru 529 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
76exbii 1848 . . . . . . . . 9 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
87exbii 1848 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
98abbii 2797 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
10 ax6ev 1969 . . . . . . . . . . . . . . 15 𝑢 𝑢 = 𝑥
11 equcom 2018 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥𝑥 = 𝑢)
1211exbii 1848 . . . . . . . . . . . . . . 15 (∃𝑢 𝑢 = 𝑥 ↔ ∃𝑢 𝑥 = 𝑢)
1310, 12mpbi 230 . . . . . . . . . . . . . 14 𝑢 𝑥 = 𝑢
14 ax6ev 1969 . . . . . . . . . . . . . . . . . . 19 𝑣 𝑣 = 𝑦
15 equcom 2018 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑦𝑦 = 𝑣)
1615exbii 1848 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 𝑣 = 𝑦 ↔ ∃𝑣 𝑦 = 𝑣)
1714, 16mpbi 230 . . . . . . . . . . . . . . . . . 18 𝑣 𝑦 = 𝑣
18 idn1 44571 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
19 opeq2 4841 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
2018, 19e1a 44624 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ▶   𝑥, 𝑦⟩ = ⟨𝑥, 𝑣   )
21 idn2 44610 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
22 opeq1 4840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
2321, 22e2 44628 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑣⟩ = ⟨𝑢, 𝑣   )
24 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩))
2524biimprd 248 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩))
2620, 23, 25e12 44720 . . . . . . . . . . . . . . . . . . . . . 22 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑦⟩ = ⟨𝑢, 𝑣   )
27 eqeq2 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑢, 𝑣⟩))
2827biimpd 229 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
2926, 28e2 44628 . . . . . . . . . . . . . . . . . . . . 21 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
3029in2 44602 . . . . . . . . . . . . . . . . . . . 20 (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
3130in1 44568 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3231eximi 1835 . . . . . . . . . . . . . . . . . 18 (∃𝑣 𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3317, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
343319.37iv 1948 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
35 19.37v 1997 . . . . . . . . . . . . . . . . 17 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3635biimpi 216 . . . . . . . . . . . . . . . 16 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3734, 36syl 17 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3837eximi 1835 . . . . . . . . . . . . . 14 (∃𝑢 𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3913, 38ax-mp 5 . . . . . . . . . . . . 13 𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
403919.37iv 1948 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4140eximi 1835 . . . . . . . . . . 11 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
42 19.9v 1984 . . . . . . . . . . . 12 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4342biimpi 216 . . . . . . . . . . 11 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4441, 43syl 17 . . . . . . . . . 10 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4544eximi 1835 . . . . . . . . 9 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
46 19.9v 1984 . . . . . . . . . 10 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4746biimpi 216 . . . . . . . . 9 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4845, 47syl 17 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4948ss2abi 4033 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
509, 49eqsstrri 3997 . . . . . 6 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
51 vex 3454 . . . . . . . . . . 11 𝑢 ∈ V
52 vex 3454 . . . . . . . . . . 11 𝑣 ∈ V
5351, 52pm3.2i 470 . . . . . . . . . 10 (𝑢 ∈ V ∧ 𝑣 ∈ V)
5453biantru 529 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ ↔ (𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5554exbii 1848 . . . . . . . 8 (∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5655exbii 1848 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5756abbii 2797 . . . . . 6 {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
5850, 57sseqtri 3998 . . . . 5 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
59 df-opab 5173 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
60 df-opab 5173 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
6158, 59, 603sstr4i 4001 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
62 df-xp 5647 . . . . 5 (V × V) = {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
6362eqcomi 2739 . . . 4 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = (V × V)
6461, 63sseqtri 3998 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ (V × V)
655, 64sstri 3959 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
66 df-rel 5648 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V))
6766biimpri 228 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) → Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6865, 67e0a 44768 1 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  Vcvv 3450  wss 3917  cop 4598  {copab 5172   × cxp 5639  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647  df-rel 5648  df-vd1 44567  df-vd2 44575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator