Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relopabVD Structured version   Visualization version   GIF version

Theorem relopabVD 43173
Description: Virtual deduction proof of relopab 5780. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5780 is relopabVD 43173 without virtual deductions and was automatically derived from relopabVD 43173.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relopabVD Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem relopabVD
Dummy variables 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . . 6 𝑥 ∈ V
2 vex 3449 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 471 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5507 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
63biantru 530 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
76exbii 1850 . . . . . . . . 9 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
87exbii 1850 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
98abbii 2806 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
10 ax6ev 1973 . . . . . . . . . . . . . . 15 𝑢 𝑢 = 𝑥
11 equcom 2021 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥𝑥 = 𝑢)
1211exbii 1850 . . . . . . . . . . . . . . 15 (∃𝑢 𝑢 = 𝑥 ↔ ∃𝑢 𝑥 = 𝑢)
1310, 12mpbi 229 . . . . . . . . . . . . . 14 𝑢 𝑥 = 𝑢
14 ax6ev 1973 . . . . . . . . . . . . . . . . . . 19 𝑣 𝑣 = 𝑦
15 equcom 2021 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑦𝑦 = 𝑣)
1615exbii 1850 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 𝑣 = 𝑦 ↔ ∃𝑣 𝑦 = 𝑣)
1714, 16mpbi 229 . . . . . . . . . . . . . . . . . 18 𝑣 𝑦 = 𝑣
18 idn1 42846 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
19 opeq2 4831 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
2018, 19e1a 42899 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ▶   𝑥, 𝑦⟩ = ⟨𝑥, 𝑣   )
21 idn2 42885 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
22 opeq1 4830 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
2321, 22e2 42903 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑣⟩ = ⟨𝑢, 𝑣   )
24 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩))
2524biimprd 247 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩))
2620, 23, 25e12 42996 . . . . . . . . . . . . . . . . . . . . . 22 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑦⟩ = ⟨𝑢, 𝑣   )
27 eqeq2 2748 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑢, 𝑣⟩))
2827biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
2926, 28e2 42903 . . . . . . . . . . . . . . . . . . . . 21 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
3029in2 42877 . . . . . . . . . . . . . . . . . . . 20 (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
3130in1 42843 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3231eximi 1837 . . . . . . . . . . . . . . . . . 18 (∃𝑣 𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3317, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
343319.37iv 1952 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
35 19.37v 1995 . . . . . . . . . . . . . . . . 17 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3635biimpi 215 . . . . . . . . . . . . . . . 16 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3734, 36syl 17 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3837eximi 1837 . . . . . . . . . . . . . 14 (∃𝑢 𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3913, 38ax-mp 5 . . . . . . . . . . . . 13 𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
403919.37iv 1952 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4140eximi 1837 . . . . . . . . . . 11 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
42 19.9v 1987 . . . . . . . . . . . 12 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4342biimpi 215 . . . . . . . . . . 11 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4441, 43syl 17 . . . . . . . . . 10 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4544eximi 1837 . . . . . . . . 9 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
46 19.9v 1987 . . . . . . . . . 10 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4746biimpi 215 . . . . . . . . 9 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4845, 47syl 17 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4948ss2abi 4023 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
509, 49eqsstrri 3979 . . . . . 6 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
51 vex 3449 . . . . . . . . . . 11 𝑢 ∈ V
52 vex 3449 . . . . . . . . . . 11 𝑣 ∈ V
5351, 52pm3.2i 471 . . . . . . . . . 10 (𝑢 ∈ V ∧ 𝑣 ∈ V)
5453biantru 530 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ ↔ (𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5554exbii 1850 . . . . . . . 8 (∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5655exbii 1850 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5756abbii 2806 . . . . . 6 {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
5850, 57sseqtri 3980 . . . . 5 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
59 df-opab 5168 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
60 df-opab 5168 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
6158, 59, 603sstr4i 3987 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
62 df-xp 5639 . . . . 5 (V × V) = {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
6362eqcomi 2745 . . . 4 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = (V × V)
6461, 63sseqtri 3980 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ (V × V)
655, 64sstri 3953 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
66 df-rel 5640 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V))
6766biimpri 227 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) → Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6865, 67e0a 43044 1 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  Vcvv 3445  wss 3910  cop 4592  {copab 5167   × cxp 5631  Rel wrel 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-opab 5168  df-xp 5639  df-rel 5640  df-vd1 42842  df-vd2 42850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator