Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relopabVD Structured version   Visualization version   GIF version

Theorem relopabVD 43744
Description: Virtual deduction proof of relopab 5824. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5824 is relopabVD 43744 without virtual deductions and was automatically derived from relopabVD 43744.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relopabVD Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem relopabVD
Dummy variables 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . . 6 𝑥 ∈ V
2 vex 3478 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 471 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 11 . . . 4 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 5550 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
63biantru 530 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
76exbii 1850 . . . . . . . . 9 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
87exbii 1850 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
98abbii 2802 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
10 ax6ev 1973 . . . . . . . . . . . . . . 15 𝑢 𝑢 = 𝑥
11 equcom 2021 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥𝑥 = 𝑢)
1211exbii 1850 . . . . . . . . . . . . . . 15 (∃𝑢 𝑢 = 𝑥 ↔ ∃𝑢 𝑥 = 𝑢)
1310, 12mpbi 229 . . . . . . . . . . . . . 14 𝑢 𝑥 = 𝑢
14 ax6ev 1973 . . . . . . . . . . . . . . . . . . 19 𝑣 𝑣 = 𝑦
15 equcom 2021 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑦𝑦 = 𝑣)
1615exbii 1850 . . . . . . . . . . . . . . . . . . 19 (∃𝑣 𝑣 = 𝑦 ↔ ∃𝑣 𝑦 = 𝑣)
1714, 16mpbi 229 . . . . . . . . . . . . . . . . . 18 𝑣 𝑦 = 𝑣
18 idn1 43417 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
19 opeq2 4874 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
2018, 19e1a 43470 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ▶   𝑥, 𝑦⟩ = ⟨𝑥, 𝑣   )
21 idn2 43456 . . . . . . . . . . . . . . . . . . . . . . . 24 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
22 opeq1 4873 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
2321, 22e2 43474 . . . . . . . . . . . . . . . . . . . . . . 23 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑣⟩ = ⟨𝑢, 𝑣   )
24 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩))
2524biimprd 247 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩ → (⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩))
2620, 23, 25e12 43567 . . . . . . . . . . . . . . . . . . . . . 22 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥, 𝑦⟩ = ⟨𝑢, 𝑣   )
27 eqeq2 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑢, 𝑣⟩))
2827biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
2926, 28e2 43474 . . . . . . . . . . . . . . . . . . . . 21 (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
3029in2 43448 . . . . . . . . . . . . . . . . . . . 20 (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
3130in1 43414 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3231eximi 1837 . . . . . . . . . . . . . . . . . 18 (∃𝑣 𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
3317, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
343319.37iv 1952 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
35 19.37v 1995 . . . . . . . . . . . . . . . . 17 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3635biimpi 215 . . . . . . . . . . . . . . . 16 (∃𝑣(𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3734, 36syl 17 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3837eximi 1837 . . . . . . . . . . . . . 14 (∃𝑢 𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
3913, 38ax-mp 5 . . . . . . . . . . . . 13 𝑢(𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
403919.37iv 1952 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4140eximi 1837 . . . . . . . . . . 11 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
42 19.9v 1987 . . . . . . . . . . . 12 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4342biimpi 215 . . . . . . . . . . 11 (∃𝑦𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4441, 43syl 17 . . . . . . . . . 10 (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4544eximi 1837 . . . . . . . . 9 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
46 19.9v 1987 . . . . . . . . . 10 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4746biimpi 215 . . . . . . . . 9 (∃𝑥𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4845, 47syl 17 . . . . . . . 8 (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
4948ss2abi 4063 . . . . . . 7 {𝑧 ∣ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
509, 49eqsstrri 4017 . . . . . 6 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩}
51 vex 3478 . . . . . . . . . . 11 𝑢 ∈ V
52 vex 3478 . . . . . . . . . . 11 𝑣 ∈ V
5351, 52pm3.2i 471 . . . . . . . . . 10 (𝑢 ∈ V ∧ 𝑣 ∈ V)
5453biantru 530 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ ↔ (𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5554exbii 1850 . . . . . . . 8 (∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5655exbii 1850 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
5756abbii 2802 . . . . . 6 {𝑧 ∣ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
5850, 57sseqtri 4018 . . . . 5 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
59 df-opab 5211 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
60 df-opab 5211 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
6158, 59, 603sstr4i 4025 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
62 df-xp 5682 . . . . 5 (V × V) = {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
6362eqcomi 2741 . . . 4 {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} = (V × V)
6461, 63sseqtri 4018 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ⊆ (V × V)
655, 64sstri 3991 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V)
66 df-rel 5683 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V))
6766biimpri 227 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ (V × V) → Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6865, 67e0a 43615 1 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2709  Vcvv 3474  wss 3948  cop 4634  {copab 5210   × cxp 5674  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-rel 5683  df-vd1 43413  df-vd2 43421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator