Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.38a | Structured version Visualization version GIF version |
Description: Under a nonfreeness hypothesis, the implication 19.38 1844 can be strengthened to an equivalence. See also 19.38b 1846. (Contributed by BJ, 3-Nov-2021.) (Proof shortened by Wolf Lammen, 9-Jul-2022.) |
Ref | Expression |
---|---|
19.38a | ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 1844 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
2 | id 22 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
3 | 2 | nfrd 1797 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | alim 1816 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
5 | 3, 4 | syl9 77 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
6 | 1, 5 | impbid2 225 | 1 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∃wex 1785 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-nf 1790 |
This theorem is referenced by: 19.21t 2202 |
Copyright terms: Public domain | W3C validator |