| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.38a | Structured version Visualization version GIF version | ||
| Description: Under a nonfreeness hypothesis, the implication 19.38 1838 can be strengthened to an equivalence. See also 19.38b 1840. (Contributed by BJ, 3-Nov-2021.) (Proof shortened by Wolf Lammen, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| 19.38a | ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.38 1838 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 2 | id 22 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 3 | 2 | nfrd 1790 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | alim 1809 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 5 | 3, 4 | syl9 77 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
| 6 | 1, 5 | impbid2 226 | 1 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: 19.21t 2205 |
| Copyright terms: Public domain | W3C validator |