| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1840 ax13lem1 2372 ax13lem2 2374 axc11n 2424 rspc6v 3606 reuss2 4285 reupick 4288 elinxp 5979 ordtr2 6365 suc11 6429 funimass4 6907 fliftfun 7269 omlimcl 8519 nneob 8597 rankwflemb 9722 cflm 10179 domtriomlem 10371 grothomex 10758 sup3 12116 caubnd 15301 fbflim2 23897 ellimc3 25813 usgruspgrb 29163 usgredgsscusgredg 29440 3cyclfrgrrn1 30264 dfon2lem6 35769 opnrebl2 36302 bj-nfimt 36619 axc11n11r 36664 bj-nnf-alrim 36736 stdpc5t 36808 wl-ax13lem1 37475 diaintclN 41045 dibintclN 41154 dihintcl 41331 sn-sup3d 42473 dflim5 43311 pm11.71 44379 axc11next 44388 rrx2plord2 48704 |
| Copyright terms: Public domain | W3C validator |