![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1838 ax13lem1 2382 ax13lem2 2384 axc11n 2434 rspc6v 3656 reuss2 4345 reupick 4348 elinxp 6048 ordtr2 6439 suc11 6502 funimass4 6986 fliftfun 7348 omlimcl 8634 nneob 8712 rankwflemb 9862 cflm 10319 domtriomlem 10511 grothomex 10898 sup3 12252 caubnd 15407 fbflim2 24006 ellimc3 25934 usgruspgrb 29218 usgredgsscusgredg 29495 3cyclfrgrrn1 30317 dfon2lem6 35752 opnrebl2 36287 bj-nfimt 36604 axc11n11r 36649 bj-nnf-alrim 36721 stdpc5t 36793 wl-ax13lem1 37460 diaintclN 41015 dibintclN 41124 dihintcl 41301 sn-sup3d 42448 dflim5 43291 pm11.71 44366 axc11next 44375 rrx2plord2 48456 |
Copyright terms: Public domain | W3C validator |