![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl9r 78 com23 86 sylan9 509 19.38a 1843 ax13lem1 2374 ax13lem2 2376 axc11n 2426 rspc6v 3632 reuss2 4316 reupick 4319 elinxp 6020 ordtr2 6409 suc11 6472 funimass4 6957 fliftfun 7309 omlimcl 8578 nneob 8655 rankwflemb 9788 cflm 10245 domtriomlem 10437 grothomex 10824 sup3 12171 caubnd 15305 fbflim2 23481 ellimc3 25396 usgruspgrb 28441 usgredgsscusgredg 28716 3cyclfrgrrn1 29538 dfon2lem6 34760 opnrebl2 35206 bj-nfimt 35515 axc11n11r 35561 bj-nnf-alrim 35633 stdpc5t 35705 wl-ax13lem1 36375 diaintclN 39929 dibintclN 40038 dihintcl 40215 dflim5 42079 pm11.71 43156 axc11next 43165 rrx2plord2 47408 |
Copyright terms: Public domain | W3C validator |