| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1840 ax13lem1 2373 ax13lem2 2375 axc11n 2425 rspc6v 3612 reuss2 4292 reupick 4295 elinxp 5993 ordtr2 6380 suc11 6444 funimass4 6928 fliftfun 7290 omlimcl 8545 nneob 8623 rankwflemb 9753 cflm 10210 domtriomlem 10402 grothomex 10789 sup3 12147 caubnd 15332 fbflim2 23871 ellimc3 25787 usgruspgrb 29117 usgredgsscusgredg 29394 3cyclfrgrrn1 30221 dfon2lem6 35783 opnrebl2 36316 bj-nfimt 36633 axc11n11r 36678 bj-nnf-alrim 36750 stdpc5t 36822 wl-ax13lem1 37489 diaintclN 41059 dibintclN 41168 dihintcl 41345 sn-sup3d 42487 dflim5 43325 pm11.71 44393 axc11next 44402 rrx2plord2 48715 |
| Copyright terms: Public domain | W3C validator |