Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1843 ax13lem1 2374 ax13lem2 2376 axc11n 2426 reuss2 4246 reupick 4249 elinxp 5918 ordtr2 6295 suc11 6354 funimass4 6816 fliftfun 7163 omlimcl 8371 nneob 8446 rankwflemb 9482 cflm 9937 domtriomlem 10129 grothomex 10516 sup3 11862 caubnd 14998 fbflim2 23036 ellimc3 24948 usgruspgrb 27454 usgredgsscusgredg 27729 3cyclfrgrrn1 28550 dfon2lem6 33670 opnrebl2 34437 bj-nfimt 34746 axc11n11r 34792 bj-nnf-alrim 34864 stdpc5t 34937 wl-ax13lem1 35592 diaintclN 38999 dibintclN 39108 dihintcl 39285 pm11.71 41904 axc11next 41913 rrx2plord2 45956 |
Copyright terms: Public domain | W3C validator |