| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1840 ax13lem1 2372 ax13lem2 2374 axc11n 2424 rspc6v 3606 reuss2 4285 reupick 4288 elinxp 5979 ordtr2 6365 suc11 6429 funimass4 6907 fliftfun 7269 omlimcl 8519 nneob 8597 rankwflemb 9722 cflm 10179 domtriomlem 10371 grothomex 10758 sup3 12116 caubnd 15301 fbflim2 23840 ellimc3 25756 usgruspgrb 29086 usgredgsscusgredg 29363 3cyclfrgrrn1 30187 dfon2lem6 35749 opnrebl2 36282 bj-nfimt 36599 axc11n11r 36644 bj-nnf-alrim 36716 stdpc5t 36788 wl-ax13lem1 37455 diaintclN 41025 dibintclN 41134 dihintcl 41311 sn-sup3d 42453 dflim5 43291 pm11.71 44359 axc11next 44368 rrx2plord2 48684 |
| Copyright terms: Public domain | W3C validator |