| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1841 ax13lem1 2374 ax13lem2 2376 axc11n 2426 rspc6v 3593 reuss2 4273 reupick 4276 elinxp 5967 ordtr2 6351 suc11 6415 funimass4 6886 fliftfun 7246 omlimcl 8493 nneob 8571 rankwflemb 9686 cflm 10141 domtriomlem 10333 grothomex 10720 sup3 12079 caubnd 15266 fbflim2 23892 ellimc3 25807 usgruspgrb 29161 usgredgsscusgredg 29438 3cyclfrgrrn1 30265 dfon2lem6 35830 opnrebl2 36363 bj-nfimt 36680 axc11n11r 36725 bj-nnf-alrim 36797 stdpc5t 36869 wl-ax13lem1 37536 diaintclN 41105 dibintclN 41214 dihintcl 41391 sn-sup3d 42533 dflim5 43370 pm11.71 44438 axc11next 44447 rrx2plord2 48762 |
| Copyright terms: Public domain | W3C validator |