![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl9r 78 com23 86 sylan9 508 19.38a 1842 ax13lem1 2373 ax13lem2 2375 axc11n 2425 rspc6v 3630 reuss2 4314 reupick 4317 elinxp 6017 ordtr2 6405 suc11 6468 funimass4 6953 fliftfun 7305 omlimcl 8574 nneob 8651 rankwflemb 9784 cflm 10241 domtriomlem 10433 grothomex 10820 sup3 12167 caubnd 15301 fbflim2 23472 ellimc3 25387 usgruspgrb 28430 usgredgsscusgredg 28705 3cyclfrgrrn1 29527 dfon2lem6 34748 opnrebl2 35194 bj-nfimt 35503 axc11n11r 35549 bj-nnf-alrim 35621 stdpc5t 35693 wl-ax13lem1 36363 diaintclN 39917 dibintclN 40026 dihintcl 40203 dflim5 42064 pm11.71 43141 axc11next 43150 rrx2plord2 47361 |
Copyright terms: Public domain | W3C validator |