![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl9r 78 com23 86 sylan9 508 19.38a 1842 ax13lem1 2373 ax13lem2 2375 axc11n 2425 rspc6v 3631 reuss2 4315 reupick 4318 elinxp 6019 ordtr2 6408 suc11 6471 funimass4 6956 fliftfun 7311 omlimcl 8580 nneob 8657 rankwflemb 9790 cflm 10247 domtriomlem 10439 grothomex 10826 sup3 12173 caubnd 15307 fbflim2 23488 ellimc3 25403 usgruspgrb 28479 usgredgsscusgredg 28754 3cyclfrgrrn1 29576 dfon2lem6 34835 opnrebl2 35298 bj-nfimt 35607 axc11n11r 35653 bj-nnf-alrim 35725 stdpc5t 35797 wl-ax13lem1 36467 diaintclN 40021 dibintclN 40130 dihintcl 40307 dflim5 42167 pm11.71 43244 axc11next 43253 rrx2plord2 47492 |
Copyright terms: Public domain | W3C validator |