![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1836 ax13lem1 2376 ax13lem2 2378 axc11n 2428 rspc6v 3642 reuss2 4331 reupick 4334 elinxp 6038 ordtr2 6429 suc11 6492 funimass4 6972 fliftfun 7331 omlimcl 8614 nneob 8692 rankwflemb 9830 cflm 10287 domtriomlem 10479 grothomex 10866 sup3 12222 caubnd 15393 fbflim2 24000 ellimc3 25928 usgruspgrb 29214 usgredgsscusgredg 29491 3cyclfrgrrn1 30313 dfon2lem6 35769 opnrebl2 36303 bj-nfimt 36620 axc11n11r 36665 bj-nnf-alrim 36737 stdpc5t 36809 wl-ax13lem1 37476 diaintclN 41040 dibintclN 41149 dihintcl 41326 sn-sup3d 42478 dflim5 43318 pm11.71 44392 axc11next 44401 rrx2plord2 48571 |
Copyright terms: Public domain | W3C validator |