| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1840 ax13lem1 2372 ax13lem2 2374 axc11n 2424 rspc6v 3598 reuss2 4277 reupick 4280 elinxp 5970 ordtr2 6352 suc11 6416 funimass4 6887 fliftfun 7249 omlimcl 8496 nneob 8574 rankwflemb 9689 cflm 10144 domtriomlem 10336 grothomex 10723 sup3 12082 caubnd 15266 fbflim2 23862 ellimc3 25778 usgruspgrb 29128 usgredgsscusgredg 29405 3cyclfrgrrn1 30229 dfon2lem6 35762 opnrebl2 36295 bj-nfimt 36612 axc11n11r 36657 bj-nnf-alrim 36729 stdpc5t 36801 wl-ax13lem1 37468 diaintclN 41037 dibintclN 41146 dihintcl 41323 sn-sup3d 42465 dflim5 43302 pm11.71 44370 axc11next 44379 rrx2plord2 48707 |
| Copyright terms: Public domain | W3C validator |