| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1840 ax13lem1 2378 ax13lem2 2380 axc11n 2430 rspc6v 3622 reuss2 4301 reupick 4304 elinxp 6006 ordtr2 6397 suc11 6461 funimass4 6943 fliftfun 7305 omlimcl 8590 nneob 8668 rankwflemb 9807 cflm 10264 domtriomlem 10456 grothomex 10843 sup3 12199 caubnd 15377 fbflim2 23915 ellimc3 25832 usgruspgrb 29162 usgredgsscusgredg 29439 3cyclfrgrrn1 30266 dfon2lem6 35806 opnrebl2 36339 bj-nfimt 36656 axc11n11r 36701 bj-nnf-alrim 36773 stdpc5t 36845 wl-ax13lem1 37512 diaintclN 41077 dibintclN 41186 dihintcl 41363 sn-sup3d 42515 dflim5 43353 pm11.71 44421 axc11next 44430 rrx2plord2 48702 |
| Copyright terms: Public domain | W3C validator |