| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9 | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 13-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| syl9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9 | ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl9r 78 com23 86 sylan9 507 19.38a 1840 ax13lem1 2372 ax13lem2 2374 axc11n 2424 rspc6v 3609 reuss2 4289 reupick 4292 elinxp 5990 ordtr2 6377 suc11 6441 funimass4 6925 fliftfun 7287 omlimcl 8542 nneob 8620 rankwflemb 9746 cflm 10203 domtriomlem 10395 grothomex 10782 sup3 12140 caubnd 15325 fbflim2 23864 ellimc3 25780 usgruspgrb 29110 usgredgsscusgredg 29387 3cyclfrgrrn1 30214 dfon2lem6 35776 opnrebl2 36309 bj-nfimt 36626 axc11n11r 36671 bj-nnf-alrim 36743 stdpc5t 36815 wl-ax13lem1 37482 diaintclN 41052 dibintclN 41161 dihintcl 41338 sn-sup3d 42480 dflim5 43318 pm11.71 44386 axc11next 44395 rrx2plord2 48711 |
| Copyright terms: Public domain | W3C validator |