MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3t Structured version   Visualization version   GIF version

Theorem 19.3t 2199
Description: Closed form of 19.3 2200 and version of 19.9t 2202 with a universal quantifier. (Contributed by NM, 9-Nov-2020.) (Proof shortened by BJ, 9-Oct-2022.)
Assertion
Ref Expression
19.3t (Ⅎ𝑥𝜑 → (∀𝑥𝜑𝜑))

Proof of Theorem 19.3t
StepHypRef Expression
1 sp 2181 . 2 (∀𝑥𝜑𝜑)
2 nf5r 2192 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
31, 2impbid2 226 1 (Ⅎ𝑥𝜑 → (∀𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-nf 1781
This theorem is referenced by:  19.23t  2208
  Copyright terms: Public domain W3C validator