MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3t Structured version   Visualization version   GIF version

Theorem 19.3t 2197
Description: Closed form of 19.3 2198 and version of 19.9t 2200 with a universal quantifier. (Contributed by NM, 9-Nov-2020.) (Proof shortened by BJ, 9-Oct-2022.)
Assertion
Ref Expression
19.3t (Ⅎ𝑥𝜑 → (∀𝑥𝜑𝜑))

Proof of Theorem 19.3t
StepHypRef Expression
1 sp 2178 . 2 (∀𝑥𝜑𝜑)
2 nf5r 2189 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
31, 2impbid2 225 1 (Ⅎ𝑥𝜑 → (∀𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  19.23t  2206
  Copyright terms: Public domain W3C validator