| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version | ||
| Description: A closed form of nfan 1899. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 5 | 2, 4 | nfim1 2200 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
| 6 | 5 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
| 7 | 1, 6 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb4b 2480 ralcom2 3361 sbcralt 3852 sbcrext 3853 csbiebt 3908 riota5f 7395 axrepndlem1 10611 axrepndlem2 10612 axunnd 10615 axpowndlem2 10617 axpowndlem3 10618 axpowndlem4 10619 axregndlem2 10622 axinfndlem1 10624 axinfnd 10625 axacndlem4 10629 axacndlem5 10630 axacnd 10631 fproddivf 16008 nfan1c 35109 wl-sbcom2d-lem1 37582 wl-mo2df 37593 wl-eudf 37595 wl-mo3t 37599 wl-ax11-lem4 37611 wl-ax11-lem6 37613 |
| Copyright terms: Public domain | W3C validator |