| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version | ||
| Description: A closed form of nfan 1899. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 5 | 2, 4 | nfim1 2200 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
| 6 | 5 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
| 7 | 1, 6 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb4b 2473 ralcom2 3340 sbcralt 3824 sbcrext 3825 csbiebt 3880 riota5f 7334 axrepndlem1 10486 axrepndlem2 10487 axunnd 10490 axpowndlem2 10492 axpowndlem3 10493 axpowndlem4 10494 axregndlem2 10497 axinfndlem1 10499 axinfnd 10500 axacndlem4 10504 axacndlem5 10505 axacnd 10506 fproddivf 15894 nfan1c 35056 wl-sbcom2d-lem1 37553 wl-mo2df 37564 wl-eudf 37566 wl-mo3t 37570 wl-ax11-lem4 37582 wl-ax11-lem6 37584 |
| Copyright terms: Public domain | W3C validator |