MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfan1 Structured version   Visualization version   GIF version

Theorem nfan1 2201
Description: A closed form of nfan 1898. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.)
Hypotheses
Ref Expression
nfim1.1 𝑥𝜑
nfim1.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfan1 𝑥(𝜑𝜓)

Proof of Theorem nfan1
StepHypRef Expression
1 df-an 396 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
2 nfim1.1 . . . 4 𝑥𝜑
3 nfim1.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1857 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4nfim1 2200 . . 3 𝑥(𝜑 → ¬ 𝜓)
65nfn 1856 . 2 𝑥 ¬ (𝜑 → ¬ 𝜓)
71, 6nfxfr 1851 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  sb4b  2483  ralcom2  3385  sbcralt  3894  sbcrext  3895  csbiebt  3951  riota5f  7433  axrepndlem1  10661  axrepndlem2  10662  axunnd  10665  axpowndlem2  10667  axpowndlem3  10668  axpowndlem4  10669  axregndlem2  10672  axinfndlem1  10674  axinfnd  10675  axacndlem4  10679  axacndlem5  10680  axacnd  10681  fproddivf  16035  nfan1c  35049  wl-sbcom2d-lem1  37513  wl-mo2df  37524  wl-eudf  37526  wl-mo3t  37530  wl-ax11-lem4  37542  wl-ax11-lem6  37544
  Copyright terms: Public domain W3C validator