| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version | ||
| Description: A closed form of nfan 1899. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 5 | 2, 4 | nfim1 2200 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
| 6 | 5 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
| 7 | 1, 6 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb4b 2473 ralcom2 3348 sbcralt 3832 sbcrext 3833 csbiebt 3888 riota5f 7354 axrepndlem1 10521 axrepndlem2 10522 axunnd 10525 axpowndlem2 10527 axpowndlem3 10528 axpowndlem4 10529 axregndlem2 10532 axinfndlem1 10534 axinfnd 10535 axacndlem4 10539 axacndlem5 10540 axacnd 10541 fproddivf 15929 nfan1c 35056 wl-sbcom2d-lem1 37540 wl-mo2df 37551 wl-eudf 37553 wl-mo3t 37557 wl-ax11-lem4 37569 wl-ax11-lem6 37571 |
| Copyright terms: Public domain | W3C validator |