| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version | ||
| Description: A closed form of nfan 1899. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 5 | 2, 4 | nfim1 2200 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
| 6 | 5 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
| 7 | 1, 6 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb4b 2473 ralcom2 3351 sbcralt 3835 sbcrext 3836 csbiebt 3891 riota5f 7372 axrepndlem1 10545 axrepndlem2 10546 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axregndlem2 10556 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 fproddivf 15953 nfan1c 35063 wl-sbcom2d-lem1 37547 wl-mo2df 37558 wl-eudf 37560 wl-mo3t 37564 wl-ax11-lem4 37576 wl-ax11-lem6 37578 |
| Copyright terms: Public domain | W3C validator |