Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version |
Description: A closed form of nfan 1902. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
Ref | Expression |
---|---|
nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 397 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1861 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | nfim1 2192 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
6 | 5 | nfn 1860 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
7 | 1, 6 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: sb4b 2475 sb4bOLD 2476 ralcom2 3290 sbcralt 3805 sbcrext 3806 csbiebt 3862 riota5f 7261 axrepndlem1 10348 axrepndlem2 10349 axunnd 10352 axpowndlem2 10354 axpowndlem3 10355 axpowndlem4 10356 axregndlem2 10359 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 fproddivf 15697 wl-sbcom2d-lem1 35714 wl-mo2df 35725 wl-eudf 35727 wl-mo3t 35731 wl-ax11-lem4 35739 wl-ax11-lem6 35741 |
Copyright terms: Public domain | W3C validator |