Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version |
Description: A closed form of nfan 1903. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1788 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
Ref | Expression |
---|---|
nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 396 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1862 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | nfim1 2195 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
6 | 5 | nfn 1861 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
7 | 1, 6 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: sb4b 2475 sb4bOLD 2476 ralcom2 3288 sbcralt 3801 sbcrext 3802 csbiebt 3858 riota5f 7241 axrepndlem1 10279 axrepndlem2 10280 axunnd 10283 axpowndlem2 10285 axpowndlem3 10286 axpowndlem4 10287 axregndlem2 10290 axinfndlem1 10292 axinfnd 10293 axacndlem4 10297 axacndlem5 10298 axacnd 10299 fproddivf 15625 wl-sbcom2d-lem1 35641 wl-mo2df 35652 wl-eudf 35654 wl-mo3t 35658 wl-ax11-lem4 35666 wl-ax11-lem6 35668 |
Copyright terms: Public domain | W3C validator |