![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfan1 | Structured version Visualization version GIF version |
Description: A closed form of nfan 1898. (Contributed by Mario Carneiro, 3-Oct-2016.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof shortened by Wolf Lammen, 7-Jul-2022.) |
Ref | Expression |
---|---|
nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 396 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
2 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
5 | 2, 4 | nfim1 2200 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ¬ 𝜓) |
6 | 5 | nfn 1856 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 → ¬ 𝜓) |
7 | 1, 6 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: sb4b 2483 ralcom2 3385 sbcralt 3894 sbcrext 3895 csbiebt 3951 riota5f 7433 axrepndlem1 10661 axrepndlem2 10662 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axregndlem2 10672 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 fproddivf 16035 nfan1c 35049 wl-sbcom2d-lem1 37513 wl-mo2df 37524 wl-eudf 37526 wl-mo3t 37530 wl-ax11-lem4 37542 wl-ax11-lem6 37544 |
Copyright terms: Public domain | W3C validator |