Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.45v | Structured version Visualization version GIF version |
Description: Version of 19.45 2231 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
19.45v | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1885 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
2 | 19.9v 1987 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) | |
3 | 2 | orbi1i 911 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 |
This theorem is referenced by: satfvsucsuc 33327 mosssn2 46162 |
Copyright terms: Public domain | W3C validator |