|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.45v | Structured version Visualization version GIF version | ||
| Description: Version of 19.45 2238 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| 19.45v | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.43 1882 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
| 2 | 19.9v 1983 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) | |
| 3 | 2 | orbi1i 914 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∨ wo 848 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 | 
| This theorem is referenced by: satfvsucsuc 35370 mosssn2 48736 | 
| Copyright terms: Public domain | W3C validator |