MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.45v Structured version   Visualization version   GIF version

Theorem 19.45v 1989
Description: Version of 19.45 2223 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
19.45v (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.45v
StepHypRef Expression
1 19.43 1877 . 2 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
2 19.9v 1979 . . 3 (∃𝑥𝜑𝜑)
32orbi1i 910 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
41, 3bitri 275 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1774
This theorem is referenced by:  satfvsucsuc  34874  mosssn2  47749
  Copyright terms: Public domain W3C validator