MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.45v Structured version   Visualization version   GIF version

Theorem 19.45v 1997
Description: Version of 19.45 2231 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
19.45v (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.45v
StepHypRef Expression
1 19.43 1885 . 2 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
2 19.9v 1987 . . 3 (∃𝑥𝜑𝜑)
32orbi1i 911 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
41, 3bitri 274 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783
This theorem is referenced by:  satfvsucsuc  33327  mosssn2  46162
  Copyright terms: Public domain W3C validator