Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosssn2 Structured version   Visualization version   GIF version

Theorem mosssn2 48927
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
mosssn2 (∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem mosssn2
StepHypRef Expression
1 19.45v 2000 . 2 (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 sssn 4775 . . 3 (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦}))
32exbii 1849 . 2 (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}))
4 mo0sn 48926 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
51, 3, 43bitr4ri 304 1 (∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  wss 3897  c0 4280  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-v 3438  df-sbc 3737  df-dif 3900  df-ss 3914  df-nul 4281  df-sn 4574
This theorem is referenced by:  subthinc  49554
  Copyright terms: Public domain W3C validator