| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosssn2 | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.45v 1992 | . 2 ⊢ (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
| 2 | sssn 4806 | . . 3 ⊢ (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦})) | |
| 3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦})) |
| 4 | mo0sn 48708 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
| 5 | 1, 3, 4 | 3bitr4ri 304 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃*wmo 2536 ⊆ wss 3931 ∅c0 4313 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-v 3465 df-sbc 3771 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: subthinc 49144 |
| Copyright terms: Public domain | W3C validator |