![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn2 | Structured version Visualization version GIF version |
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.) |
Ref | Expression |
---|---|
mosssn2 | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.45v 1991 | . 2 ⊢ (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
2 | sssn 4831 | . . 3 ⊢ (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦})) | |
3 | 2 | exbii 1845 | . 2 ⊢ (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦})) |
4 | mo0sn 48664 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
5 | 1, 3, 4 | 3bitr4ri 304 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃*wmo 2536 ⊆ wss 3963 ∅c0 4339 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-v 3480 df-sbc 3792 df-dif 3966 df-ss 3980 df-nul 4340 df-sn 4632 |
This theorem is referenced by: subthinc 48840 |
Copyright terms: Public domain | W3C validator |