Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosssn2 Structured version   Visualization version   GIF version

Theorem mosssn2 46050
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
mosssn2 (∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem mosssn2
StepHypRef Expression
1 19.45v 1998 . 2 (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 sssn 4756 . . 3 (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦}))
32exbii 1851 . 2 (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}))
4 mo0sn 46049 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
51, 3, 43bitr4ri 303 1 (∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  wss 3883  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-v 3424  df-sbc 3712  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559
This theorem is referenced by:  subthinc  46209
  Copyright terms: Public domain W3C validator