Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn2 | Structured version Visualization version GIF version |
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.) |
Ref | Expression |
---|---|
mosssn2 | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.45v 1998 | . 2 ⊢ (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
2 | sssn 4756 | . . 3 ⊢ (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦})) | |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦})) |
4 | mo0sn 46049 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
5 | 1, 3, 4 | 3bitr4ri 303 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃*wmo 2538 ⊆ wss 3883 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-v 3424 df-sbc 3712 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 |
This theorem is referenced by: subthinc 46209 |
Copyright terms: Public domain | W3C validator |