| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosssn2 | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.45v 2000 | . 2 ⊢ (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
| 2 | sssn 4775 | . . 3 ⊢ (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦})) | |
| 3 | 2 | exbii 1849 | . 2 ⊢ (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦})) |
| 4 | mo0sn 48926 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) | |
| 5 | 1, 3, 4 | 3bitr4ri 304 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 ⊆ wss 3897 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-v 3438 df-sbc 3737 df-dif 3900 df-ss 3914 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: subthinc 49554 |
| Copyright terms: Public domain | W3C validator |