Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosssn2 Structured version   Visualization version   GIF version

Theorem mosssn2 48762
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
mosssn2 (∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem mosssn2
StepHypRef Expression
1 19.45v 1999 . 2 (∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}) ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
2 sssn 4807 . . 3 (𝐴 ⊆ {𝑦} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝑦}))
32exbii 1848 . 2 (∃𝑦 𝐴 ⊆ {𝑦} ↔ ∃𝑦(𝐴 = ∅ ∨ 𝐴 = {𝑦}))
4 mo0sn 48761 . 2 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
51, 3, 43bitr4ri 304 1 (∃*𝑥 𝑥𝐴 ↔ ∃𝑦 𝐴 ⊆ {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2538  wss 3931  c0 4313  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-v 3466  df-sbc 3771  df-dif 3934  df-ss 3948  df-nul 4314  df-sn 4607
This theorem is referenced by:  subthinc  49296
  Copyright terms: Public domain W3C validator