![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.45 | Structured version Visualization version GIF version |
Description: Theorem 19.45 of [Margaris] p. 90. See 19.45v 1993 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
19.45.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.45 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1881 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
2 | 19.45.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | 19.9 2206 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
4 | 3 | orbi1i 912 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
5 | 1, 4 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: eeorOLD 2340 |
Copyright terms: Public domain | W3C validator |