| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.45 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.45 of [Margaris] p. 90. See 19.45v 1999 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.45.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.45 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1882 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
| 2 | 19.45.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | 19.9 2206 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| 4 | 3 | orbi1i 913 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: eeorOLD 2336 |
| Copyright terms: Public domain | W3C validator |