 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs4v Structured version   Visualization version   GIF version

Theorem equs4v 2107
 Description: Version of equs4 2436 with a disjoint variable condition, which requires fewer axioms. (Contributed by BJ, 31-May-2019.)
Assertion
Ref Expression
equs4v (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem equs4v
StepHypRef Expression
1 ax6ev 2077 . 2 𝑥 𝑥 = 𝑦
2 exintr 1994 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦𝜑)))
31, 2mpi 20 1 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386  ∀wal 1654  ∃wex 1878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-6 2075 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1879 This theorem is referenced by:  equvelvOLD  2138  sb2v  2300  bj-sb56  33174  bj-equs45fv  33284
 Copyright terms: Public domain W3C validator