MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exnaln Structured version   Visualization version   GIF version

Theorem 2exnaln 1829
Description: Theorem *11.22 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2exnaln (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)

Proof of Theorem 2exnaln
StepHypRef Expression
1 df-ex 1780 . 2 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥 ¬ ∃𝑦𝜑)
2 alnex 1781 . . 3 (∀𝑦 ¬ 𝜑 ↔ ¬ ∃𝑦𝜑)
32albii 1819 . 2 (∀𝑥𝑦 ¬ 𝜑 ↔ ∀𝑥 ¬ ∃𝑦𝜑)
41, 3xchbinxr 335 1 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  2nexaln  1830  excomimw  2043  exexw  2051  excom  2162  cgsex4gOLD  3529  opab0  5559  bj-modal4e  36716
  Copyright terms: Public domain W3C validator