|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exexw | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 36702, requiring fewer axioms. (Contributed by GG, 4-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| exexw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| exexw | ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exexw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) | 
| 3 | 2 | hba1w 2046 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑥 ¬ 𝜑) | 
| 4 | 2 | spw 2032 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝜑) | 
| 5 | 4 | alimi 1810 | . . . 4 ⊢ (∀𝑥∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑) | 
| 6 | 3, 5 | impbii 209 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥∀𝑥 ¬ 𝜑) | 
| 7 | 6 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥∀𝑥 ¬ 𝜑) | 
| 8 | df-ex 1779 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 9 | 2exnaln 1828 | . 2 ⊢ (∃𝑥∃𝑥𝜑 ↔ ¬ ∀𝑥∀𝑥 ¬ 𝜑) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: dfid2 5579 bj-dfid2ALT 37067 | 
| Copyright terms: Public domain | W3C validator |