MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exexw Structured version   Visualization version   GIF version

Theorem exexw 2059
Description: Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 34784, requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024.)
Hypothesis
Ref Expression
exexw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
exexw (∃𝑥𝜑 ↔ ∃𝑥𝑥𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem exexw
StepHypRef Expression
1 exexw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21notbid 321 . . . . 5 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32hba1w 2055 . . . 4 (∀𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
42spw 2042 . . . . 5 (∀𝑥 ¬ 𝜑 → ¬ 𝜑)
54alimi 1819 . . . 4 (∀𝑥𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑)
63, 5impbii 212 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥𝑥 ¬ 𝜑)
76notbii 323 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝑥 ¬ 𝜑)
8 df-ex 1788 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
9 2exnaln 1836 . 2 (∃𝑥𝑥𝜑 ↔ ¬ ∀𝑥𝑥 ¬ 𝜑)
107, 8, 93bitr4i 306 1 (∃𝑥𝜑 ↔ ∃𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788
This theorem is referenced by:  dfid2  5481  bj-dfid2ALT  35138
  Copyright terms: Public domain W3C validator