MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exexw Structured version   Visualization version   GIF version

Theorem exexw 2054
Description: Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 34869, requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024.)
Hypothesis
Ref Expression
exexw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
exexw (∃𝑥𝜑 ↔ ∃𝑥𝑥𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem exexw
StepHypRef Expression
1 exexw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32hba1w 2050 . . . 4 (∀𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
42spw 2037 . . . . 5 (∀𝑥 ¬ 𝜑 → ¬ 𝜑)
54alimi 1814 . . . 4 (∀𝑥𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑)
63, 5impbii 208 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥𝑥 ¬ 𝜑)
76notbii 320 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝑥 ¬ 𝜑)
8 df-ex 1783 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
9 2exnaln 1831 . 2 (∃𝑥𝑥𝜑 ↔ ¬ ∀𝑥𝑥 ¬ 𝜑)
107, 8, 93bitr4i 303 1 (∃𝑥𝜑 ↔ ∃𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  dfid2  5488  bj-dfid2ALT  35223
  Copyright terms: Public domain W3C validator