Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exexw | Structured version Visualization version GIF version |
Description: Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 34784, requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024.) |
Ref | Expression |
---|---|
exexw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exexw | ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exexw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 321 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | hba1w 2055 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑥 ¬ 𝜑) |
4 | 2 | spw 2042 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝜑) |
5 | 4 | alimi 1819 | . . . 4 ⊢ (∀𝑥∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
6 | 3, 5 | impbii 212 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥∀𝑥 ¬ 𝜑) |
7 | 6 | notbii 323 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥∀𝑥 ¬ 𝜑) |
8 | df-ex 1788 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
9 | 2exnaln 1836 | . 2 ⊢ (∃𝑥∃𝑥𝜑 ↔ ¬ ∀𝑥∀𝑥 ¬ 𝜑) | |
10 | 7, 8, 9 | 3bitr4i 306 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∀wal 1541 ∃wex 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: dfid2 5481 bj-dfid2ALT 35138 |
Copyright terms: Public domain | W3C validator |