Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opab0 | Structured version Visualization version GIF version |
Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
opab0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabn0 5486 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) | |
2 | df-ne 2942 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅) | |
3 | 2exnaln 1830 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 300 | . 2 ⊢ (¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) |
5 | 4 | con4bii 320 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1538 = wceq 1540 ∃wex 1780 ≠ wne 2941 ∅c0 4267 {copab 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5150 |
This theorem is referenced by: iresn0n0 5980 fvmptopabOLD 7370 epinid0 9429 cnvepnep 9437 opabf 36585 sprsymrelfvlem 45194 |
Copyright terms: Public domain | W3C validator |