| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opab0 | Structured version Visualization version GIF version | ||
| Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| opab0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabn0 5493 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) | |
| 2 | df-ne 2929 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅) | |
| 3 | 2exnaln 1830 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ≠ wne 2928 ∅c0 4283 {copab 5153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 |
| This theorem is referenced by: iresn0n0 6003 epinid0 9489 cnvepnep 9498 opabf 38402 tfsconcatb0 43383 sprsymrelfvlem 47527 |
| Copyright terms: Public domain | W3C validator |