![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opab0 | Structured version Visualization version GIF version |
Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
opab0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabn0 5234 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) | |
2 | df-ne 3000 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅) | |
3 | 2exnaln 1927 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 293 | . 2 ⊢ (¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) |
5 | 4 | con4bii 313 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∀wal 1654 = wceq 1656 ∃wex 1878 ≠ wne 2999 ∅c0 4146 {copab 4937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-opab 4938 |
This theorem is referenced by: fvmptopab 6962 epinid0 8781 cnvepnep 8787 opabf 34677 sprsymrelfvlem 42605 |
Copyright terms: Public domain | W3C validator |