![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opab0 | Structured version Visualization version GIF version |
Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
opab0 | ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabn0 5552 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) | |
2 | df-ne 2941 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅) | |
3 | 2exnaln 1831 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 1, 2, 3 | 3bitr3i 300 | . 2 ⊢ (¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) |
5 | 4 | con4bii 320 | 1 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1539 = wceq 1541 ∃wex 1781 ≠ wne 2940 ∅c0 4321 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 |
This theorem is referenced by: iresn0n0 6051 fvmptopabOLD 7460 epinid0 9591 cnvepnep 9599 opabf 37225 tfsconcatb0 42079 sprsymrelfvlem 46144 |
Copyright terms: Public domain | W3C validator |