| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opab0 | Structured version Visualization version GIF version | ||
| Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| opab0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabn0 5528 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) | |
| 2 | df-ne 2933 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅) | |
| 3 | 2exnaln 1829 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | . 2 ⊢ (¬ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) |
| 5 | 4 | con4bii 321 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ≠ wne 2932 ∅c0 4308 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 |
| This theorem is referenced by: iresn0n0 6041 fvmptopabOLD 7462 epinid0 9614 cnvepnep 9622 opabf 38386 tfsconcatb0 43368 sprsymrelfvlem 47504 |
| Copyright terms: Public domain | W3C validator |