MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opab0 Structured version   Visualization version   GIF version

Theorem opab0 5517
Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.)
Assertion
Ref Expression
opab0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)

Proof of Theorem opab0
StepHypRef Expression
1 opabn0 5516 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
2 df-ne 2927 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅)
3 2exnaln 1829 . . 3 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
41, 2, 33bitr3i 301 . 2 (¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
54con4bii 321 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538   = wceq 1540  wex 1779  wne 2926  c0 4299  {copab 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173
This theorem is referenced by:  iresn0n0  6028  fvmptopabOLD  7447  epinid0  9560  cnvepnep  9568  opabf  38357  tfsconcatb0  43340  sprsymrelfvlem  47495
  Copyright terms: Public domain W3C validator