MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opab0 Structured version   Visualization version   GIF version

Theorem opab0 5494
Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.)
Assertion
Ref Expression
opab0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)

Proof of Theorem opab0
StepHypRef Expression
1 opabn0 5493 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
2 df-ne 2929 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅)
3 2exnaln 1830 . . 3 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
41, 2, 33bitr3i 301 . 2 (¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
54con4bii 321 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wex 1780  wne 2928  c0 4283  {copab 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154
This theorem is referenced by:  iresn0n0  6003  epinid0  9489  cnvepnep  9498  opabf  38402  tfsconcatb0  43383  sprsymrelfvlem  47527
  Copyright terms: Public domain W3C validator