| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1870. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.26-3 3090 ralbiim 3091 2ralbiim 3108 r19.26-2 3114 r19.27v 3158 r19.28v 3160 reu8 3693 ssrab 4024 r19.28z 4449 r19.27z 4456 ralf0 4465 ralnralall 4466 2reu4lem 4473 2ralunsn 4846 iuneq2 4961 disjxun 5090 triin 5215 asymref2 6066 cnvpo 6235 dfpo2 6244 fncnv 6555 fnres 6609 mptfnf 6617 fnopabg 6619 mpteqb 6949 eqfnfv3 6967 fvn0ssdmfun 7008 caoftrn 7654 poseq 8091 wfr3g 8252 iiner 8716 ixpeq2 8838 ixpin 8850 ixpfi2 9240 wemaplem2 9439 frr3g 9652 dfac5 10023 kmlem6 10050 eltsk2g 10645 intgru 10708 axgroth6 10722 fsequb 13882 rexanuz 15253 rexanre 15254 cau3lem 15262 rlimcn3 15497 o1of2 15520 o1rlimmul 15526 climbdd 15579 sqrt2irr 16158 gcdcllem1 16410 pc11 16792 prmreclem2 16829 catpropd 17615 issubc3 17756 fucinv 17883 ispos2 18221 issubg3 19023 issubg4 19024 pmtrdifwrdel2 19365 ringsrg 20182 iunocv 21588 cply1mul 22181 scmatf1 22416 cpmatsubgpmat 22605 tgval2 22841 1stcelcls 23346 ptclsg 23500 ptcnplem 23506 fbun 23725 txflf 23891 ucncn 24170 prdsmet 24256 metequiv 24395 metequiv2 24396 ncvsi 25049 iscau4 25177 cmetcaulem 25186 evthicc2 25359 ismbfcn 25528 mbfi1flimlem 25621 rolle 25892 itgsubst 25954 plydivex 26203 ulmcaulem 26301 ulmcau 26302 ulmbdd 26305 ulmcn 26306 mumullem2 27088 2sqlem6 27332 tgcgr4 28476 axpasch 28886 axeuclid 28908 axcontlem2 28910 axcontlem4 28912 axcontlem7 28915 vtxd0nedgb 29434 fusgrregdegfi 29515 rusgr1vtxlem 29533 uspgr2wlkeq 29591 wlkdlem4 29629 lfgriswlk 29632 frgrreg 30338 frgrregord013 30339 friendshipgt3 30342 ocsh 31227 spanuni 31488 riesz4i 32007 leopadd 32076 leoptri 32080 leoptr 32081 inpr0 32476 disjunsn 32538 voliune 34196 volfiniune 34197 eulerpartlemr 34342 eulerpartlemn 34349 nummin 35058 fmlasucdisj 35372 wzel 35798 neibastop1 36333 numiunnum 36444 phpreu 37584 ptrecube 37600 poimirlem23 37623 poimirlem27 37627 ovoliunnfl 37642 voliunnfl 37644 volsupnfl 37645 itg2addnc 37654 inixp 37708 rngoueqz 37920 intidl 38009 pclclN 39870 tendoeq2 40753 deg1gprod 42113 mzpincl 42707 lerabdioph 42778 ltrabdioph 42781 nerabdioph 42782 dvdsrabdioph 42783 dford3lem1 42999 gneispace 44107 ssrabf 45092 r19.28zf 45137 climxrre 45731 stoweidlem7 45988 stoweidlem54 46035 dirkercncflem3 46086 ply1mulgsumlem1 48371 ldepsnlinclem1 48490 ldepsnlinclem2 48491 iinxp 48815 nelsubc2 49054 |
| Copyright terms: Public domain | W3C validator |