| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1870. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.26-3 3092 ralbiim 3093 2ralbiim 3112 r19.26-2 3118 r19.27v 3166 r19.28v 3168 reu8 3704 ssrab 4036 r19.28z 4461 r19.27z 4468 ralf0 4477 ralnralall 4478 2reu4lem 4485 2ralunsn 4859 iuneq2 4975 disjxun 5105 triin 5231 asymref2 6090 cnvpo 6260 dfpo2 6269 fncnv 6589 fnres 6645 mptfnf 6653 fnopabg 6655 mpteqb 6987 eqfnfv3 7005 fvn0ssdmfun 7046 caoftrn 7694 poseq 8137 wfr3g 8298 iiner 8762 ixpeq2 8884 ixpin 8896 ixpfi2 9301 wemaplem2 9500 frr3g 9709 dfac5 10082 kmlem6 10109 eltsk2g 10704 intgru 10767 axgroth6 10781 fsequb 13940 rexanuz 15312 rexanre 15313 cau3lem 15321 rlimcn3 15556 o1of2 15579 o1rlimmul 15585 climbdd 15638 sqrt2irr 16217 gcdcllem1 16469 pc11 16851 prmreclem2 16888 catpropd 17670 issubc3 17811 fucinv 17938 ispos2 18276 issubg3 19076 issubg4 19077 pmtrdifwrdel2 19416 ringsrg 20206 iunocv 21590 cply1mul 22183 scmatf1 22418 cpmatsubgpmat 22607 tgval2 22843 1stcelcls 23348 ptclsg 23502 ptcnplem 23508 fbun 23727 txflf 23893 ucncn 24172 prdsmet 24258 metequiv 24397 metequiv2 24398 ncvsi 25051 iscau4 25179 cmetcaulem 25188 evthicc2 25361 ismbfcn 25530 mbfi1flimlem 25623 rolle 25894 itgsubst 25956 plydivex 26205 ulmcaulem 26303 ulmcau 26304 ulmbdd 26307 ulmcn 26308 mumullem2 27090 2sqlem6 27334 tgcgr4 28458 axpasch 28868 axeuclid 28890 axcontlem2 28892 axcontlem4 28894 axcontlem7 28897 vtxd0nedgb 29416 fusgrregdegfi 29497 rusgr1vtxlem 29515 uspgr2wlkeq 29574 wlkdlem4 29613 lfgriswlk 29616 frgrreg 30323 frgrregord013 30324 friendshipgt3 30327 ocsh 31212 spanuni 31473 riesz4i 31992 leopadd 32061 leoptri 32065 leoptr 32066 inpr0 32461 disjunsn 32523 voliune 34219 volfiniune 34220 eulerpartlemr 34365 eulerpartlemn 34372 nummin 35081 fmlasucdisj 35386 wzel 35812 neibastop1 36347 numiunnum 36458 phpreu 37598 ptrecube 37614 poimirlem23 37637 poimirlem27 37641 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 itg2addnc 37668 inixp 37722 rngoueqz 37934 intidl 38023 pclclN 39885 tendoeq2 40768 deg1gprod 42128 mzpincl 42722 lerabdioph 42793 ltrabdioph 42796 nerabdioph 42797 dvdsrabdioph 42798 dford3lem1 43015 gneispace 44123 ssrabf 45108 r19.28zf 45153 climxrre 45748 stoweidlem7 46005 stoweidlem54 46052 dirkercncflem3 46103 ply1mulgsumlem1 48375 ldepsnlinclem1 48494 ldepsnlinclem2 48495 iinxp 48819 nelsubc2 49058 |
| Copyright terms: Public domain | W3C validator |