![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1869. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3091 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: r19.26-3 3118 ralbiim 3119 2ralbiim 3138 r19.26-2 3144 r19.27v 3194 r19.28v 3196 reu8 3755 ssrab 4096 r19.28z 4521 r19.27z 4528 ralf0 4537 ralnralall 4538 2reu4lem 4545 2ralunsn 4919 iuneq2 5034 disjxun 5164 triin 5300 asymref2 6149 cnvpo 6318 dfpo2 6327 fncnv 6651 fnres 6707 mptfnf 6715 fnopabg 6717 mpteqb 7048 eqfnfv3 7066 fvn0ssdmfun 7108 caoftrn 7753 poseq 8199 wfr3g 8363 iiner 8847 ixpeq2 8969 ixpin 8981 ixpfi2 9420 wemaplem2 9616 frr3g 9825 dfac5 10198 kmlem6 10225 eltsk2g 10820 intgru 10883 axgroth6 10897 fsequb 14026 rexanuz 15394 rexanre 15395 cau3lem 15403 rlimcn3 15636 o1of2 15659 o1rlimmul 15665 climbdd 15720 sqrt2irr 16297 gcdcllem1 16545 pc11 16927 prmreclem2 16964 catpropd 17767 issubc3 17913 fucinv 18043 ispos2 18385 issubg3 19184 issubg4 19185 pmtrdifwrdel2 19528 ringsrg 20320 iunocv 21722 cply1mul 22321 scmatf1 22558 cpmatsubgpmat 22747 tgval2 22984 1stcelcls 23490 ptclsg 23644 ptcnplem 23650 fbun 23869 txflf 24035 ucncn 24315 prdsmet 24401 metequiv 24543 metequiv2 24544 ncvsi 25204 iscau4 25332 cmetcaulem 25341 evthicc2 25514 ismbfcn 25683 mbfi1flimlem 25777 rolle 26048 itgsubst 26110 plydivex 26357 ulmcaulem 26455 ulmcau 26456 ulmbdd 26459 ulmcn 26460 mumullem2 27241 2sqlem6 27485 tgcgr4 28557 axpasch 28974 axeuclid 28996 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 vtxd0nedgb 29524 fusgrregdegfi 29605 rusgr1vtxlem 29623 uspgr2wlkeq 29682 wlkdlem4 29721 lfgriswlk 29724 frgrreg 30426 frgrregord013 30427 friendshipgt3 30430 ocsh 31315 spanuni 31576 riesz4i 32095 leopadd 32164 leoptri 32168 leoptr 32169 inpr0 32560 disjunsn 32616 voliune 34193 volfiniune 34194 eulerpartlemr 34339 eulerpartlemn 34346 nummin 35067 fmlasucdisj 35367 wzel 35788 neibastop1 36325 numiunnum 36436 phpreu 37564 ptrecube 37580 poimirlem23 37603 poimirlem27 37607 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 itg2addnc 37634 inixp 37688 rngoueqz 37900 intidl 37989 pclclN 39848 tendoeq2 40731 deg1gprod 42097 mzpincl 42690 lerabdioph 42761 ltrabdioph 42764 nerabdioph 42765 dvdsrabdioph 42766 dford3lem1 42983 gneispace 44096 ssrabf 45016 r19.28zf 45064 climxrre 45671 stoweidlem7 45928 stoweidlem54 45975 dirkercncflem3 46026 ply1mulgsumlem1 48115 ldepsnlinclem1 48234 ldepsnlinclem2 48235 |
Copyright terms: Public domain | W3C validator |