![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1874. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3084 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3084 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 471 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 408 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: r19.26-3 3113 ralbiim 3114 2ralbiim 3133 r19.26-2 3139 r19.27v 3188 r19.28v 3190 reu8 3730 ssrab 4071 r19.28z 4498 r19.27z 4505 ralf0 4514 ralnralall 4519 2reu4lem 4526 2ralunsn 4896 iuneq2 5017 disjxun 5147 triin 5283 asymref2 6119 cnvpo 6287 dfpo2 6296 fncnv 6622 fnres 6678 mptfnf 6686 fnopabg 6688 mpteqb 7018 eqfnfv3 7035 fvn0ssdmfun 7077 caoftrn 7708 poseq 8144 wfr3g 8307 iiner 8783 ixpeq2 8905 ixpin 8917 ixpfi2 9350 wemaplem2 9542 frr3g 9751 dfac5 10123 kmlem6 10150 eltsk2g 10746 intgru 10809 axgroth6 10823 fsequb 13940 rexanuz 15292 rexanre 15293 cau3lem 15301 rlimcn3 15534 o1of2 15557 o1rlimmul 15563 climbdd 15618 sqrt2irr 16192 gcdcllem1 16440 pc11 16813 prmreclem2 16850 catpropd 17653 issubc3 17799 fucinv 17926 ispos2 18268 issubg3 19024 issubg4 19025 pmtrdifwrdel2 19354 ringsrg 20109 iunocv 21234 cply1mul 21818 scmatf1 22033 cpmatsubgpmat 22222 tgval2 22459 1stcelcls 22965 ptclsg 23119 ptcnplem 23125 fbun 23344 txflf 23510 ucncn 23790 prdsmet 23876 metequiv 24018 metequiv2 24019 ncvsi 24668 iscau4 24796 cmetcaulem 24805 evthicc2 24977 ismbfcn 25146 mbfi1flimlem 25240 rolle 25507 itgsubst 25566 plydivex 25810 ulmcaulem 25906 ulmcau 25907 ulmbdd 25910 ulmcn 25911 mumullem2 26684 2sqlem6 26926 tgcgr4 27782 axpasch 28199 axeuclid 28221 axcontlem2 28223 axcontlem4 28225 axcontlem7 28228 vtxd0nedgb 28745 fusgrregdegfi 28826 rusgr1vtxlem 28844 uspgr2wlkeq 28903 wlkdlem4 28942 lfgriswlk 28945 frgrreg 29647 frgrregord013 29648 friendshipgt3 29651 ocsh 30536 spanuni 30797 riesz4i 31316 leopadd 31385 leoptri 31389 leoptr 31390 inpr0 31769 disjunsn 31825 voliune 33227 volfiniune 33228 eulerpartlemr 33373 eulerpartlemn 33380 nummin 34094 fmlasucdisj 34390 wzel 34796 neibastop1 35244 phpreu 36472 ptrecube 36488 poimirlem23 36511 poimirlem27 36515 ovoliunnfl 36530 voliunnfl 36532 volsupnfl 36533 itg2addnc 36542 inixp 36596 rngoueqz 36808 intidl 36897 pclclN 38762 tendoeq2 39645 mzpincl 41472 lerabdioph 41543 ltrabdioph 41546 nerabdioph 41547 dvdsrabdioph 41548 dford3lem1 41765 gneispace 42885 ssrabf 43803 r19.28zf 43853 climxrre 44466 stoweidlem7 44723 stoweidlem54 44770 dirkercncflem3 44821 ply1mulgsumlem1 47067 ldepsnlinclem1 47186 ldepsnlinclem2 47187 |
Copyright terms: Public domain | W3C validator |