| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1870. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.26-3 3092 ralbiim 3093 2ralbiim 3112 r19.26-2 3118 r19.27v 3164 r19.28v 3166 reu8 3701 ssrab 4032 r19.28z 4457 r19.27z 4464 ralf0 4473 ralnralall 4474 2reu4lem 4481 2ralunsn 4855 iuneq2 4971 disjxun 5100 triin 5226 asymref2 6078 cnvpo 6248 dfpo2 6257 fncnv 6573 fnres 6627 mptfnf 6635 fnopabg 6637 mpteqb 6969 eqfnfv3 6987 fvn0ssdmfun 7028 caoftrn 7674 poseq 8114 wfr3g 8275 iiner 8739 ixpeq2 8861 ixpin 8873 ixpfi2 9277 wemaplem2 9476 frr3g 9685 dfac5 10058 kmlem6 10085 eltsk2g 10680 intgru 10743 axgroth6 10757 fsequb 13916 rexanuz 15288 rexanre 15289 cau3lem 15297 rlimcn3 15532 o1of2 15555 o1rlimmul 15561 climbdd 15614 sqrt2irr 16193 gcdcllem1 16445 pc11 16827 prmreclem2 16864 catpropd 17650 issubc3 17791 fucinv 17918 ispos2 18256 issubg3 19058 issubg4 19059 pmtrdifwrdel2 19400 ringsrg 20217 iunocv 21623 cply1mul 22216 scmatf1 22451 cpmatsubgpmat 22640 tgval2 22876 1stcelcls 23381 ptclsg 23535 ptcnplem 23541 fbun 23760 txflf 23926 ucncn 24205 prdsmet 24291 metequiv 24430 metequiv2 24431 ncvsi 25084 iscau4 25212 cmetcaulem 25221 evthicc2 25394 ismbfcn 25563 mbfi1flimlem 25656 rolle 25927 itgsubst 25989 plydivex 26238 ulmcaulem 26336 ulmcau 26337 ulmbdd 26340 ulmcn 26341 mumullem2 27123 2sqlem6 27367 tgcgr4 28511 axpasch 28921 axeuclid 28943 axcontlem2 28945 axcontlem4 28947 axcontlem7 28950 vtxd0nedgb 29469 fusgrregdegfi 29550 rusgr1vtxlem 29568 uspgr2wlkeq 29626 wlkdlem4 29664 lfgriswlk 29667 frgrreg 30373 frgrregord013 30374 friendshipgt3 30377 ocsh 31262 spanuni 31523 riesz4i 32042 leopadd 32111 leoptri 32115 leoptr 32116 inpr0 32511 disjunsn 32573 voliune 34212 volfiniune 34213 eulerpartlemr 34358 eulerpartlemn 34365 nummin 35074 fmlasucdisj 35379 wzel 35805 neibastop1 36340 numiunnum 36451 phpreu 37591 ptrecube 37607 poimirlem23 37630 poimirlem27 37634 ovoliunnfl 37649 voliunnfl 37651 volsupnfl 37652 itg2addnc 37661 inixp 37715 rngoueqz 37927 intidl 38016 pclclN 39878 tendoeq2 40761 deg1gprod 42121 mzpincl 42715 lerabdioph 42786 ltrabdioph 42789 nerabdioph 42790 dvdsrabdioph 42791 dford3lem1 43008 gneispace 44116 ssrabf 45101 r19.28zf 45146 climxrre 45741 stoweidlem7 45998 stoweidlem54 46045 dirkercncflem3 46096 ply1mulgsumlem1 48368 ldepsnlinclem1 48487 ldepsnlinclem2 48488 iinxp 48812 nelsubc2 49051 |
| Copyright terms: Public domain | W3C validator |