![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1873. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 512 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 470 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3085 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 407 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: r19.26-3 3112 ralbiim 3113 2ralbiim 3132 r19.26-2 3138 r19.27v 3187 r19.28v 3189 reu8 3728 ssrab 4069 r19.28z 4496 r19.27z 4503 ralf0 4512 ralnralall 4517 2reu4lem 4524 2ralunsn 4894 iuneq2 5015 disjxun 5145 triin 5281 asymref2 6115 cnvpo 6283 dfpo2 6292 fncnv 6618 fnres 6674 mptfnf 6682 fnopabg 6684 mpteqb 7014 eqfnfv3 7031 fvn0ssdmfun 7073 caoftrn 7704 poseq 8140 wfr3g 8303 iiner 8779 ixpeq2 8901 ixpin 8913 ixpfi2 9346 wemaplem2 9538 frr3g 9747 dfac5 10119 kmlem6 10146 eltsk2g 10742 intgru 10805 axgroth6 10819 fsequb 13936 rexanuz 15288 rexanre 15289 cau3lem 15297 rlimcn3 15530 o1of2 15553 o1rlimmul 15559 climbdd 15614 sqrt2irr 16188 gcdcllem1 16436 pc11 16809 prmreclem2 16846 catpropd 17649 issubc3 17795 fucinv 17922 ispos2 18264 issubg3 19018 issubg4 19019 pmtrdifwrdel2 19348 ringsrg 20102 iunocv 21225 cply1mul 21809 scmatf1 22024 cpmatsubgpmat 22213 tgval2 22450 1stcelcls 22956 ptclsg 23110 ptcnplem 23116 fbun 23335 txflf 23501 ucncn 23781 prdsmet 23867 metequiv 24009 metequiv2 24010 ncvsi 24659 iscau4 24787 cmetcaulem 24796 evthicc2 24968 ismbfcn 25137 mbfi1flimlem 25231 rolle 25498 itgsubst 25557 plydivex 25801 ulmcaulem 25897 ulmcau 25898 ulmbdd 25901 ulmcn 25902 mumullem2 26673 2sqlem6 26915 tgcgr4 27771 axpasch 28188 axeuclid 28210 axcontlem2 28212 axcontlem4 28214 axcontlem7 28217 vtxd0nedgb 28734 fusgrregdegfi 28815 rusgr1vtxlem 28833 uspgr2wlkeq 28892 wlkdlem4 28931 lfgriswlk 28934 frgrreg 29636 frgrregord013 29637 friendshipgt3 29640 ocsh 30523 spanuni 30784 riesz4i 31303 leopadd 31372 leoptri 31376 leoptr 31377 inpr0 31756 disjunsn 31812 voliune 33215 volfiniune 33216 eulerpartlemr 33361 eulerpartlemn 33368 nummin 34082 fmlasucdisj 34378 wzel 34784 neibastop1 35232 phpreu 36460 ptrecube 36476 poimirlem23 36499 poimirlem27 36503 ovoliunnfl 36518 voliunnfl 36520 volsupnfl 36521 itg2addnc 36530 inixp 36584 rngoueqz 36796 intidl 36885 pclclN 38750 tendoeq2 39633 mzpincl 41457 lerabdioph 41528 ltrabdioph 41531 nerabdioph 41532 dvdsrabdioph 41533 dford3lem1 41750 gneispace 42870 ssrabf 43788 r19.28zf 43838 climxrre 44452 stoweidlem7 44709 stoweidlem54 44756 dirkercncflem3 44807 ply1mulgsumlem1 47020 ldepsnlinclem1 47139 ldepsnlinclem2 47140 |
Copyright terms: Public domain | W3C validator |