Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1874. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: r19.26-2 3095 r19.26-3 3096 ralbiim 3098 2ralbiim 3099 r19.27v 3109 r19.28v 3110 reu8 3663 ssrab 4002 r19.28z 4425 r19.27z 4432 ralf0 4441 ralnralall 4446 2reu4lem 4453 2ralunsn 4823 iuneq2 4940 disjxun 5068 triin 5202 asymref2 6011 cnvpo 6179 dfpo2 6188 fncnv 6491 fnres 6543 mptfnf 6552 fnopabg 6554 mpteqb 6876 eqfnfv3 6893 fvn0ssdmfun 6934 caoftrn 7549 wfr3g 8109 iiner 8536 ixpeq2 8657 ixpin 8669 ixpfi2 9047 wemaplem2 9236 frr3g 9445 dfac5 9815 kmlem6 9842 eltsk2g 10438 intgru 10501 axgroth6 10515 fsequb 13623 rexanuz 14985 rexanre 14986 cau3lem 14994 rlimcn3 15227 o1of2 15250 o1rlimmul 15256 climbdd 15311 sqrt2irr 15886 gcdcllem1 16134 pc11 16509 prmreclem2 16546 catpropd 17335 issubc3 17480 fucinv 17607 ispos2 17948 issubg3 18688 issubg4 18689 pmtrdifwrdel2 19009 ringsrg 19743 iunocv 20798 cply1mul 21375 scmatf1 21588 cpmatsubgpmat 21777 tgval2 22014 1stcelcls 22520 ptclsg 22674 ptcnplem 22680 fbun 22899 txflf 23065 ucncn 23345 prdsmet 23431 metequiv 23571 metequiv2 23572 ncvsi 24220 iscau4 24348 cmetcaulem 24357 evthicc2 24529 ismbfcn 24698 mbfi1flimlem 24792 rolle 25059 itgsubst 25118 plydivex 25362 ulmcaulem 25458 ulmcau 25459 ulmbdd 25462 ulmcn 25463 mumullem2 26234 2sqlem6 26476 tgcgr4 26796 axpasch 27212 axeuclid 27234 axcontlem2 27236 axcontlem4 27238 axcontlem7 27241 vtxd0nedgb 27758 fusgrregdegfi 27839 rusgr1vtxlem 27857 uspgr2wlkeq 27915 wlkdlem4 27955 lfgriswlk 27958 frgrreg 28659 frgrregord013 28660 friendshipgt3 28663 ocsh 29546 spanuni 29807 riesz4i 30326 leopadd 30395 leoptri 30399 leoptr 30400 inpr0 30781 disjunsn 30834 voliune 32097 volfiniune 32098 eulerpartlemr 32241 eulerpartlemn 32248 nummin 32963 fmlasucdisj 33261 poseq 33729 wzel 33745 neibastop1 34475 phpreu 35688 ptrecube 35704 poimirlem23 35727 poimirlem27 35731 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 itg2addnc 35758 inixp 35813 rngoueqz 36025 intidl 36114 pclclN 37832 tendoeq2 38715 mzpincl 40472 lerabdioph 40543 ltrabdioph 40546 nerabdioph 40547 dvdsrabdioph 40548 dford3lem1 40764 gneispace 41633 ssrabf 42553 climxrre 43181 stoweidlem7 43438 stoweidlem54 43485 dirkercncflem3 43536 ply1mulgsumlem1 45615 ldepsnlinclem1 45734 ldepsnlinclem2 45735 |
Copyright terms: Public domain | W3C validator |