| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1870. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3067 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3067 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: r19.26-3 3093 ralbiim 3094 2ralbiim 3113 r19.26-2 3119 r19.27v 3167 r19.28v 3169 reu8 3707 ssrab 4039 r19.28z 4464 r19.27z 4471 ralf0 4480 ralnralall 4481 2reu4lem 4488 2ralunsn 4862 iuneq2 4978 disjxun 5108 triin 5234 asymref2 6093 cnvpo 6263 dfpo2 6272 fncnv 6592 fnres 6648 mptfnf 6656 fnopabg 6658 mpteqb 6990 eqfnfv3 7008 fvn0ssdmfun 7049 caoftrn 7697 poseq 8140 wfr3g 8301 iiner 8765 ixpeq2 8887 ixpin 8899 ixpfi2 9308 wemaplem2 9507 frr3g 9716 dfac5 10089 kmlem6 10116 eltsk2g 10711 intgru 10774 axgroth6 10788 fsequb 13947 rexanuz 15319 rexanre 15320 cau3lem 15328 rlimcn3 15563 o1of2 15586 o1rlimmul 15592 climbdd 15645 sqrt2irr 16224 gcdcllem1 16476 pc11 16858 prmreclem2 16895 catpropd 17677 issubc3 17818 fucinv 17945 ispos2 18283 issubg3 19083 issubg4 19084 pmtrdifwrdel2 19423 ringsrg 20213 iunocv 21597 cply1mul 22190 scmatf1 22425 cpmatsubgpmat 22614 tgval2 22850 1stcelcls 23355 ptclsg 23509 ptcnplem 23515 fbun 23734 txflf 23900 ucncn 24179 prdsmet 24265 metequiv 24404 metequiv2 24405 ncvsi 25058 iscau4 25186 cmetcaulem 25195 evthicc2 25368 ismbfcn 25537 mbfi1flimlem 25630 rolle 25901 itgsubst 25963 plydivex 26212 ulmcaulem 26310 ulmcau 26311 ulmbdd 26314 ulmcn 26315 mumullem2 27097 2sqlem6 27341 tgcgr4 28465 axpasch 28875 axeuclid 28897 axcontlem2 28899 axcontlem4 28901 axcontlem7 28904 vtxd0nedgb 29423 fusgrregdegfi 29504 rusgr1vtxlem 29522 uspgr2wlkeq 29581 wlkdlem4 29620 lfgriswlk 29623 frgrreg 30330 frgrregord013 30331 friendshipgt3 30334 ocsh 31219 spanuni 31480 riesz4i 31999 leopadd 32068 leoptri 32072 leoptr 32073 inpr0 32468 disjunsn 32530 voliune 34226 volfiniune 34227 eulerpartlemr 34372 eulerpartlemn 34379 nummin 35088 fmlasucdisj 35393 wzel 35819 neibastop1 36354 numiunnum 36465 phpreu 37605 ptrecube 37621 poimirlem23 37644 poimirlem27 37648 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 itg2addnc 37675 inixp 37729 rngoueqz 37941 intidl 38030 pclclN 39892 tendoeq2 40775 deg1gprod 42135 mzpincl 42729 lerabdioph 42800 ltrabdioph 42803 nerabdioph 42804 dvdsrabdioph 42805 dford3lem1 43022 gneispace 44130 ssrabf 45115 r19.28zf 45160 climxrre 45755 stoweidlem7 46012 stoweidlem54 46059 dirkercncflem3 46110 ply1mulgsumlem1 48379 ldepsnlinclem1 48498 ldepsnlinclem2 48499 iinxp 48823 nelsubc2 49062 |
| Copyright terms: Public domain | W3C validator |