| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1871. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: r19.26-3 3093 ralbiim 3094 2ralbiim 3111 r19.26-2 3117 r19.27v 3161 r19.28v 3163 reu8 3687 ssrab 4018 r19.28z 4445 r19.27z 4452 ralf0 4461 ralnralall 4462 2reu4lem 4469 2ralunsn 4844 iuneq2 4959 disjxun 5087 triin 5212 asymref2 6063 cnvpo 6234 dfpo2 6243 fncnv 6554 fnres 6608 mptfnf 6616 fnopabg 6618 mpteqb 6948 eqfnfv3 6966 fvn0ssdmfun 7007 caoftrn 7651 poseq 8088 wfr3g 8249 iiner 8713 ixpeq2 8835 ixpin 8847 ixpfi2 9234 wemaplem2 9433 frr3g 9649 dfac5 10020 kmlem6 10047 eltsk2g 10642 intgru 10705 axgroth6 10719 fsequb 13882 rexanuz 15253 rexanre 15254 cau3lem 15262 rlimcn3 15497 o1of2 15520 o1rlimmul 15526 climbdd 15579 sqrt2irr 16158 gcdcllem1 16410 pc11 16792 prmreclem2 16829 catpropd 17615 issubc3 17756 fucinv 17883 ispos2 18221 issubg3 19057 issubg4 19058 pmtrdifwrdel2 19398 ringsrg 20215 iunocv 21618 cply1mul 22211 scmatf1 22446 cpmatsubgpmat 22635 tgval2 22871 1stcelcls 23376 ptclsg 23530 ptcnplem 23536 fbun 23755 txflf 23921 ucncn 24199 prdsmet 24285 metequiv 24424 metequiv2 24425 ncvsi 25078 iscau4 25206 cmetcaulem 25215 evthicc2 25388 ismbfcn 25557 mbfi1flimlem 25650 rolle 25921 itgsubst 25983 plydivex 26232 ulmcaulem 26330 ulmcau 26331 ulmbdd 26334 ulmcn 26335 mumullem2 27117 2sqlem6 27361 tgcgr4 28509 axpasch 28919 axeuclid 28941 axcontlem2 28943 axcontlem4 28945 axcontlem7 28948 vtxd0nedgb 29467 fusgrregdegfi 29548 rusgr1vtxlem 29566 uspgr2wlkeq 29624 wlkdlem4 29662 lfgriswlk 29665 frgrreg 30374 frgrregord013 30375 friendshipgt3 30378 ocsh 31263 spanuni 31524 riesz4i 32043 leopadd 32112 leoptri 32116 leoptr 32117 inpr0 32512 disjunsn 32574 voliune 34242 volfiniune 34243 eulerpartlemr 34387 eulerpartlemn 34394 nummin 35104 fmlasucdisj 35443 wzel 35866 neibastop1 36401 numiunnum 36512 phpreu 37652 ptrecube 37668 poimirlem23 37691 poimirlem27 37695 ovoliunnfl 37710 voliunnfl 37712 volsupnfl 37713 itg2addnc 37722 inixp 37776 rngoueqz 37988 intidl 38077 pclclN 39938 tendoeq2 40821 deg1gprod 42181 mzpincl 42775 lerabdioph 42846 ltrabdioph 42849 nerabdioph 42850 dvdsrabdioph 42851 dford3lem1 43067 gneispace 44175 ssrabf 45159 r19.28zf 45204 climxrre 45796 stoweidlem7 46053 stoweidlem54 46100 dirkercncflem3 46151 ply1mulgsumlem1 48426 ldepsnlinclem1 48545 ldepsnlinclem2 48546 iinxp 48870 nelsubc2 49109 |
| Copyright terms: Public domain | W3C validator |