![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1867. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: r19.26-3 3109 ralbiim 3110 2ralbiim 3129 r19.26-2 3135 r19.27v 3185 r19.28v 3187 reu8 3741 ssrab 4082 r19.28z 4503 r19.27z 4510 ralf0 4519 ralnralall 4520 2reu4lem 4527 2ralunsn 4899 iuneq2 5015 disjxun 5145 triin 5281 asymref2 6139 cnvpo 6308 dfpo2 6317 fncnv 6640 fnres 6695 mptfnf 6703 fnopabg 6705 mpteqb 7034 eqfnfv3 7052 fvn0ssdmfun 7093 caoftrn 7736 poseq 8181 wfr3g 8345 iiner 8827 ixpeq2 8949 ixpin 8961 ixpfi2 9387 wemaplem2 9584 frr3g 9793 dfac5 10166 kmlem6 10193 eltsk2g 10788 intgru 10851 axgroth6 10865 fsequb 14012 rexanuz 15380 rexanre 15381 cau3lem 15389 rlimcn3 15622 o1of2 15645 o1rlimmul 15651 climbdd 15704 sqrt2irr 16281 gcdcllem1 16532 pc11 16913 prmreclem2 16950 catpropd 17753 issubc3 17899 fucinv 18029 ispos2 18372 issubg3 19174 issubg4 19175 pmtrdifwrdel2 19518 ringsrg 20310 iunocv 21716 cply1mul 22315 scmatf1 22552 cpmatsubgpmat 22741 tgval2 22978 1stcelcls 23484 ptclsg 23638 ptcnplem 23644 fbun 23863 txflf 24029 ucncn 24309 prdsmet 24395 metequiv 24537 metequiv2 24538 ncvsi 25198 iscau4 25326 cmetcaulem 25335 evthicc2 25508 ismbfcn 25677 mbfi1flimlem 25771 rolle 26042 itgsubst 26104 plydivex 26353 ulmcaulem 26451 ulmcau 26452 ulmbdd 26455 ulmcn 26456 mumullem2 27237 2sqlem6 27481 tgcgr4 28553 axpasch 28970 axeuclid 28992 axcontlem2 28994 axcontlem4 28996 axcontlem7 28999 vtxd0nedgb 29520 fusgrregdegfi 29601 rusgr1vtxlem 29619 uspgr2wlkeq 29678 wlkdlem4 29717 lfgriswlk 29720 frgrreg 30422 frgrregord013 30423 friendshipgt3 30426 ocsh 31311 spanuni 31572 riesz4i 32091 leopadd 32160 leoptri 32164 leoptr 32165 inpr0 32557 disjunsn 32613 voliune 34209 volfiniune 34210 eulerpartlemr 34355 eulerpartlemn 34362 nummin 35083 fmlasucdisj 35383 wzel 35805 neibastop1 36341 numiunnum 36452 phpreu 37590 ptrecube 37606 poimirlem23 37629 poimirlem27 37633 ovoliunnfl 37648 voliunnfl 37650 volsupnfl 37651 itg2addnc 37660 inixp 37714 rngoueqz 37926 intidl 38015 pclclN 39873 tendoeq2 40756 deg1gprod 42121 mzpincl 42721 lerabdioph 42792 ltrabdioph 42795 nerabdioph 42796 dvdsrabdioph 42797 dford3lem1 43014 gneispace 44123 ssrabf 45053 r19.28zf 45101 climxrre 45705 stoweidlem7 45962 stoweidlem54 46009 dirkercncflem3 46060 ply1mulgsumlem1 48231 ldepsnlinclem1 48350 ldepsnlinclem2 48351 |
Copyright terms: Public domain | W3C validator |