![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1871. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 510 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 468 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 405 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3060 |
This theorem is referenced by: r19.26-3 3110 ralbiim 3111 2ralbiim 3130 r19.26-2 3136 r19.27v 3185 r19.28v 3187 reu8 3728 ssrab 4069 r19.28z 4496 r19.27z 4503 ralf0 4512 ralnralall 4517 2reu4lem 4524 2ralunsn 4894 iuneq2 5015 disjxun 5145 triin 5281 asymref2 6117 cnvpo 6285 dfpo2 6294 fncnv 6620 fnres 6676 mptfnf 6684 fnopabg 6686 mpteqb 7016 eqfnfv3 7033 fvn0ssdmfun 7075 caoftrn 7710 poseq 8146 wfr3g 8309 iiner 8785 ixpeq2 8907 ixpin 8919 ixpfi2 9352 wemaplem2 9544 frr3g 9753 dfac5 10125 kmlem6 10152 eltsk2g 10748 intgru 10811 axgroth6 10825 fsequb 13944 rexanuz 15296 rexanre 15297 cau3lem 15305 rlimcn3 15538 o1of2 15561 o1rlimmul 15567 climbdd 15622 sqrt2irr 16196 gcdcllem1 16444 pc11 16817 prmreclem2 16854 catpropd 17657 issubc3 17803 fucinv 17930 ispos2 18272 issubg3 19060 issubg4 19061 pmtrdifwrdel2 19395 ringsrg 20185 iunocv 21453 cply1mul 22038 scmatf1 22253 cpmatsubgpmat 22442 tgval2 22679 1stcelcls 23185 ptclsg 23339 ptcnplem 23345 fbun 23564 txflf 23730 ucncn 24010 prdsmet 24096 metequiv 24238 metequiv2 24239 ncvsi 24899 iscau4 25027 cmetcaulem 25036 evthicc2 25209 ismbfcn 25378 mbfi1flimlem 25472 rolle 25742 itgsubst 25801 plydivex 26046 ulmcaulem 26142 ulmcau 26143 ulmbdd 26146 ulmcn 26147 mumullem2 26920 2sqlem6 27162 tgcgr4 28049 axpasch 28466 axeuclid 28488 axcontlem2 28490 axcontlem4 28492 axcontlem7 28495 vtxd0nedgb 29012 fusgrregdegfi 29093 rusgr1vtxlem 29111 uspgr2wlkeq 29170 wlkdlem4 29209 lfgriswlk 29212 frgrreg 29914 frgrregord013 29915 friendshipgt3 29918 ocsh 30803 spanuni 31064 riesz4i 31583 leopadd 31652 leoptri 31656 leoptr 31657 inpr0 32036 disjunsn 32092 voliune 33525 volfiniune 33526 eulerpartlemr 33671 eulerpartlemn 33678 nummin 34392 fmlasucdisj 34688 wzel 35100 neibastop1 35547 phpreu 36775 ptrecube 36791 poimirlem23 36814 poimirlem27 36818 ovoliunnfl 36833 voliunnfl 36835 volsupnfl 36836 itg2addnc 36845 inixp 36899 rngoueqz 37111 intidl 37200 pclclN 39065 tendoeq2 39948 mzpincl 41774 lerabdioph 41845 ltrabdioph 41848 nerabdioph 41849 dvdsrabdioph 41850 dford3lem1 42067 gneispace 43187 ssrabf 44104 r19.28zf 44154 climxrre 44764 stoweidlem7 45021 stoweidlem54 45068 dirkercncflem3 45119 ply1mulgsumlem1 47154 ldepsnlinclem1 47273 ldepsnlinclem2 47274 |
Copyright terms: Public domain | W3C validator |