| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1870. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3073 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3073 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3075 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: r19.26-3 3099 ralbiim 3100 2ralbiim 3119 r19.26-2 3125 r19.27v 3173 r19.28v 3175 reu8 3716 ssrab 4048 r19.28z 4473 r19.27z 4480 ralf0 4489 ralnralall 4490 2reu4lem 4497 2ralunsn 4871 iuneq2 4987 disjxun 5117 triin 5246 asymref2 6106 cnvpo 6276 dfpo2 6285 fncnv 6608 fnres 6664 mptfnf 6672 fnopabg 6674 mpteqb 7004 eqfnfv3 7022 fvn0ssdmfun 7063 caoftrn 7710 poseq 8155 wfr3g 8319 iiner 8801 ixpeq2 8923 ixpin 8935 ixpfi2 9360 wemaplem2 9559 frr3g 9768 dfac5 10141 kmlem6 10168 eltsk2g 10763 intgru 10826 axgroth6 10840 fsequb 13991 rexanuz 15362 rexanre 15363 cau3lem 15371 rlimcn3 15604 o1of2 15627 o1rlimmul 15633 climbdd 15686 sqrt2irr 16265 gcdcllem1 16516 pc11 16898 prmreclem2 16935 catpropd 17719 issubc3 17860 fucinv 17987 ispos2 18325 issubg3 19125 issubg4 19126 pmtrdifwrdel2 19465 ringsrg 20255 iunocv 21639 cply1mul 22232 scmatf1 22467 cpmatsubgpmat 22656 tgval2 22892 1stcelcls 23397 ptclsg 23551 ptcnplem 23557 fbun 23776 txflf 23942 ucncn 24221 prdsmet 24307 metequiv 24446 metequiv2 24447 ncvsi 25101 iscau4 25229 cmetcaulem 25238 evthicc2 25411 ismbfcn 25580 mbfi1flimlem 25673 rolle 25944 itgsubst 26006 plydivex 26255 ulmcaulem 26353 ulmcau 26354 ulmbdd 26357 ulmcn 26358 mumullem2 27140 2sqlem6 27384 tgcgr4 28456 axpasch 28866 axeuclid 28888 axcontlem2 28890 axcontlem4 28892 axcontlem7 28895 vtxd0nedgb 29414 fusgrregdegfi 29495 rusgr1vtxlem 29513 uspgr2wlkeq 29572 wlkdlem4 29611 lfgriswlk 29614 frgrreg 30321 frgrregord013 30322 friendshipgt3 30325 ocsh 31210 spanuni 31471 riesz4i 31990 leopadd 32059 leoptri 32063 leoptr 32064 inpr0 32459 disjunsn 32521 voliune 34206 volfiniune 34207 eulerpartlemr 34352 eulerpartlemn 34359 nummin 35068 fmlasucdisj 35367 wzel 35788 neibastop1 36323 numiunnum 36434 phpreu 37574 ptrecube 37590 poimirlem23 37613 poimirlem27 37617 ovoliunnfl 37632 voliunnfl 37634 volsupnfl 37635 itg2addnc 37644 inixp 37698 rngoueqz 37910 intidl 37999 pclclN 39856 tendoeq2 40739 deg1gprod 42099 mzpincl 42704 lerabdioph 42775 ltrabdioph 42778 nerabdioph 42779 dvdsrabdioph 42780 dford3lem1 42997 gneispace 44105 ssrabf 45086 r19.28zf 45131 climxrre 45727 stoweidlem7 45984 stoweidlem54 46031 dirkercncflem3 46082 ply1mulgsumlem1 48310 ldepsnlinclem1 48429 ldepsnlinclem2 48430 iinxp 48757 nelsubc2 48984 |
| Copyright terms: Public domain | W3C validator |