Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1874. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3088 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 3088 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 512 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 470 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 407 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3070 |
This theorem is referenced by: r19.26-2 3097 r19.26-3 3098 ralbiim 3100 2ralbiim 3101 r19.27v 3116 r19.28v 3117 reu8 3669 ssrab 4007 r19.28z 4429 r19.27z 4436 ralf0 4445 ralnralall 4450 2reu4lem 4457 2ralunsn 4827 iuneq2 4944 disjxun 5073 triin 5207 asymref2 6027 cnvpo 6194 dfpo2 6203 fncnv 6514 fnres 6568 mptfnf 6577 fnopabg 6579 mpteqb 6903 eqfnfv3 6920 fvn0ssdmfun 6961 caoftrn 7580 wfr3g 8147 iiner 8587 ixpeq2 8708 ixpin 8720 ixpfi2 9126 wemaplem2 9315 frr3g 9523 dfac5 9893 kmlem6 9920 eltsk2g 10516 intgru 10579 axgroth6 10593 fsequb 13704 rexanuz 15066 rexanre 15067 cau3lem 15075 rlimcn3 15308 o1of2 15331 o1rlimmul 15337 climbdd 15392 sqrt2irr 15967 gcdcllem1 16215 pc11 16590 prmreclem2 16627 catpropd 17427 issubc3 17573 fucinv 17700 ispos2 18042 issubg3 18782 issubg4 18783 pmtrdifwrdel2 19103 ringsrg 19837 iunocv 20895 cply1mul 21474 scmatf1 21689 cpmatsubgpmat 21878 tgval2 22115 1stcelcls 22621 ptclsg 22775 ptcnplem 22781 fbun 23000 txflf 23166 ucncn 23446 prdsmet 23532 metequiv 23674 metequiv2 23675 ncvsi 24324 iscau4 24452 cmetcaulem 24461 evthicc2 24633 ismbfcn 24802 mbfi1flimlem 24896 rolle 25163 itgsubst 25222 plydivex 25466 ulmcaulem 25562 ulmcau 25563 ulmbdd 25566 ulmcn 25567 mumullem2 26338 2sqlem6 26580 tgcgr4 26901 axpasch 27318 axeuclid 27340 axcontlem2 27342 axcontlem4 27344 axcontlem7 27347 vtxd0nedgb 27864 fusgrregdegfi 27945 rusgr1vtxlem 27963 uspgr2wlkeq 28022 wlkdlem4 28062 lfgriswlk 28065 frgrreg 28767 frgrregord013 28768 friendshipgt3 28771 ocsh 29654 spanuni 29915 riesz4i 30434 leopadd 30503 leoptri 30507 leoptr 30508 inpr0 30889 disjunsn 30942 voliune 32206 volfiniune 32207 eulerpartlemr 32350 eulerpartlemn 32357 nummin 33072 fmlasucdisj 33370 poseq 33811 wzel 33827 neibastop1 34557 phpreu 35770 ptrecube 35786 poimirlem23 35809 poimirlem27 35813 ovoliunnfl 35828 voliunnfl 35830 volsupnfl 35831 itg2addnc 35840 inixp 35895 rngoueqz 36107 intidl 36196 pclclN 37912 tendoeq2 38795 mzpincl 40563 lerabdioph 40634 ltrabdioph 40637 nerabdioph 40638 dvdsrabdioph 40639 dford3lem1 40855 gneispace 41751 ssrabf 42671 climxrre 43298 stoweidlem7 43555 stoweidlem54 43602 dirkercncflem3 43653 ply1mulgsumlem1 45738 ldepsnlinclem1 45857 ldepsnlinclem2 45858 |
Copyright terms: Public domain | W3C validator |