| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.26 1870. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 6 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | ral2imi 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.26-3 3092 ralbiim 3093 2ralbiim 3112 r19.26-2 3118 r19.27v 3164 r19.28v 3166 reu8 3701 ssrab 4032 r19.28z 4457 r19.27z 4464 ralf0 4473 ralnralall 4474 2reu4lem 4481 2ralunsn 4855 iuneq2 4971 disjxun 5100 triin 5226 asymref2 6078 cnvpo 6248 dfpo2 6257 fncnv 6573 fnres 6627 mptfnf 6635 fnopabg 6637 mpteqb 6969 eqfnfv3 6987 fvn0ssdmfun 7028 caoftrn 7674 poseq 8114 wfr3g 8275 iiner 8739 ixpeq2 8861 ixpin 8873 ixpfi2 9277 wemaplem2 9476 frr3g 9685 dfac5 10058 kmlem6 10085 eltsk2g 10680 intgru 10743 axgroth6 10757 fsequb 13916 rexanuz 15288 rexanre 15289 cau3lem 15297 rlimcn3 15532 o1of2 15555 o1rlimmul 15561 climbdd 15614 sqrt2irr 16193 gcdcllem1 16445 pc11 16827 prmreclem2 16864 catpropd 17646 issubc3 17787 fucinv 17914 ispos2 18252 issubg3 19052 issubg4 19053 pmtrdifwrdel2 19392 ringsrg 20182 iunocv 21566 cply1mul 22159 scmatf1 22394 cpmatsubgpmat 22583 tgval2 22819 1stcelcls 23324 ptclsg 23478 ptcnplem 23484 fbun 23703 txflf 23869 ucncn 24148 prdsmet 24234 metequiv 24373 metequiv2 24374 ncvsi 25027 iscau4 25155 cmetcaulem 25164 evthicc2 25337 ismbfcn 25506 mbfi1flimlem 25599 rolle 25870 itgsubst 25932 plydivex 26181 ulmcaulem 26279 ulmcau 26280 ulmbdd 26283 ulmcn 26284 mumullem2 27066 2sqlem6 27310 tgcgr4 28434 axpasch 28844 axeuclid 28866 axcontlem2 28868 axcontlem4 28870 axcontlem7 28873 vtxd0nedgb 29392 fusgrregdegfi 29473 rusgr1vtxlem 29491 uspgr2wlkeq 29549 wlkdlem4 29587 lfgriswlk 29590 frgrreg 30296 frgrregord013 30297 friendshipgt3 30300 ocsh 31185 spanuni 31446 riesz4i 31965 leopadd 32034 leoptri 32038 leoptr 32039 inpr0 32434 disjunsn 32496 voliune 34192 volfiniune 34193 eulerpartlemr 34338 eulerpartlemn 34345 nummin 35054 fmlasucdisj 35359 wzel 35785 neibastop1 36320 numiunnum 36431 phpreu 37571 ptrecube 37587 poimirlem23 37610 poimirlem27 37614 ovoliunnfl 37629 voliunnfl 37631 volsupnfl 37632 itg2addnc 37641 inixp 37695 rngoueqz 37907 intidl 37996 pclclN 39858 tendoeq2 40741 deg1gprod 42101 mzpincl 42695 lerabdioph 42766 ltrabdioph 42769 nerabdioph 42770 dvdsrabdioph 42771 dford3lem1 42988 gneispace 44096 ssrabf 45081 r19.28zf 45126 climxrre 45721 stoweidlem7 45978 stoweidlem54 46025 dirkercncflem3 46076 ply1mulgsumlem1 48348 ldepsnlinclem1 48467 ldepsnlinclem2 48468 iinxp 48792 nelsubc2 49031 |
| Copyright terms: Public domain | W3C validator |