| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralnex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
| Ref | Expression |
|---|---|
| ralnex2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3058 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 𝜑) | |
| 2 | 1 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑) |
| 3 | ralnex 3058 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: ralnex3 3113 r2exlem 3121 rexcom 3261 genpnnp 10896 axtgupdim2 28449 uhgrvd00 29513 nrt2irr 30453 ply1dg3rt0irred 33546 dff15 35096 fmlaomn0 35434 gonan0 35436 goaln0 35437 hashnexinj 42220 fourierdlem42 46246 ichnreuop 47571 |
| Copyright terms: Public domain | W3C validator |