![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralnex2 | Structured version Visualization version GIF version |
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
Ref | Expression |
---|---|
ralnex2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3064 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | ralbii 3085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑) |
3 | ralnex 3064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3053 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-ral 3054 df-rex 3063 |
This theorem is referenced by: ralnex3 3126 r2exlem 3135 rexcom 3279 genpnnp 10995 axtgupdim2 28146 uhgrvd00 29215 nrt2irr 30150 dff15 34542 fmlaomn0 34836 gonan0 34838 goaln0 34839 fourierdlem42 45316 ichnreuop 46591 |
Copyright terms: Public domain | W3C validator |