MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnex2 Structured version   Visualization version   GIF version

Theorem ralnex2 3113
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.)
Assertion
Ref Expression
ralnex2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem ralnex2
StepHypRef Expression
1 ralnex 3055 . . 3 (∀𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑦𝐵 𝜑)
21ralbii 3075 . 2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝐴 ¬ ∃𝑦𝐵 𝜑)
3 ralnex 3055 . 2 (∀𝑥𝐴 ¬ ∃𝑦𝐵 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 275 1 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  ralnex3  3114  r2exlem  3122  rexcom  3266  genpnnp  10958  axtgupdim2  28398  uhgrvd00  29462  nrt2irr  30402  ply1dg3rt0irred  33551  dff15  35074  fmlaomn0  35377  gonan0  35379  goaln0  35380  hashnexinj  42116  fourierdlem42  46147  ichnreuop  47473
  Copyright terms: Public domain W3C validator