MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnex2 Structured version   Visualization version   GIF version

Theorem ralnex2 3192
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ralnex2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem ralnex2
StepHypRef Expression
1 notnotb 306 . 2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
2 notnotb 306 . . . 4 (𝜑 ↔ ¬ ¬ 𝜑)
322rexbii 3189 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 ¬ ¬ 𝜑)
4 rexnal2 3190 . . 3 (∃𝑥𝐴𝑦𝐵 ¬ ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
53, 4bitr2i 267 . 2 (¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜑)
61, 5xchbinx 325 1 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wral 3055  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904
This theorem depends on definitions:  df-bi 198  df-an 385  df-ex 1875  df-ral 3060  df-rex 3061
This theorem is referenced by:  r2exlem  3206  axtgupdim2  25675  uhgrvd00  26735  fourierdlem42  41027
  Copyright terms: Public domain W3C validator