Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralnex2 | Structured version Visualization version GIF version |
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
Ref | Expression |
---|---|
ralnex2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3163 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑) |
3 | ralnex 3163 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: ralnex3 3189 r2exlem 3230 genpnnp 10692 axtgupdim2 26736 uhgrvd00 27804 dff15 32956 fmlaomn0 33252 gonan0 33254 goaln0 33255 fourierdlem42 43580 ichnreuop 44812 |
Copyright terms: Public domain | W3C validator |