Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincciso Structured version   Visualization version   GIF version

Theorem thincciso 48849
Description: Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Oct-2024.)
Hypotheses
Ref Expression
thincciso.c 𝐶 = (CatCat‘𝑈)
thincciso.b 𝐵 = (Base‘𝐶)
thincciso.r 𝑅 = (Base‘𝑋)
thincciso.s 𝑆 = (Base‘𝑌)
thincciso.h 𝐻 = (Hom ‘𝑋)
thincciso.j 𝐽 = (Hom ‘𝑌)
thincciso.u (𝜑𝑈𝑉)
thincciso.x (𝜑𝑋𝐵)
thincciso.y (𝜑𝑌𝐵)
thincciso.xt (𝜑𝑋 ∈ ThinCat)
thincciso.yt (𝜑𝑌 ∈ ThinCat)
Assertion
Ref Expression
thincciso (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
Distinct variable groups:   𝐶,𝑓,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦   𝑓,𝐽,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑆,𝑓   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem thincciso
Dummy variables 𝑎 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
2 thincciso.b . . 3 𝐵 = (Base‘𝐶)
3 thincciso.u . . . 4 (𝜑𝑈𝑉)
4 thincciso.c . . . . 5 𝐶 = (CatCat‘𝑈)
54catccat 18162 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 thincciso.x . . 3 (𝜑𝑋𝐵)
8 thincciso.y . . 3 (𝜑𝑌𝐵)
91, 2, 6, 7, 8cic 17847 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
10 opex 5475 . . . . . . 7 𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ V
1110a1i 11 . . . . . 6 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ V)
12 biimp 215 . . . . . . . . . . . . 13 (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅))
13122ralimi 3121 . . . . . . . . . . . 12 (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅))
1413ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅))
15 thincciso.r . . . . . . . . . . . 12 𝑅 = (Base‘𝑋)
16 thincciso.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝑌)
17 thincciso.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝑋)
18 thincciso.yt . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ThinCat)
1918adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑌 ∈ ThinCat)
20 eqid 2735 . . . . . . . . . . . . 13 (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) = (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))
21 thincciso.s . . . . . . . . . . . . . 14 𝑆 = (Base‘𝑌)
22 thincciso.xt . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ThinCat)
2322adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑋 ∈ ThinCat)
2423thinccd 48825 . . . . . . . . . . . . . 14 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑋 ∈ Cat)
25 simprr 773 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓:𝑅1-1-onto𝑆)
26 f1of 6849 . . . . . . . . . . . . . . 15 (𝑓:𝑅1-1-onto𝑆𝑓:𝑅𝑆)
2725, 26syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓:𝑅𝑆)
28 biimpr 220 . . . . . . . . . . . . . . . 16 (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
29282ralimi 3121 . . . . . . . . . . . . . . 15 (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → ∀𝑥𝑅𝑦𝑅 (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
3029ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ∀𝑥𝑅𝑦𝑅 (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
3115, 21, 17, 16, 24, 19, 27, 20, 30functhinc 48845 . . . . . . . . . . . . 13 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (𝑓(𝑋 Func 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) = (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))))
3220, 31mpbiri 258 . . . . . . . . . . . 12 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓(𝑋 Func 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))))
3315, 16, 17, 19, 32fullthinc 48846 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (𝑓(𝑋 Full 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅)))
3414, 33mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓(𝑋 Full 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))))
35 df-br 5149 . . . . . . . . . 10 (𝑓(𝑋 Full 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Full 𝑌))
3634, 35sylib 218 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Full 𝑌))
3723, 32thincfth 48848 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓(𝑋 Faith 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))))
38 df-br 5149 . . . . . . . . . 10 (𝑓(𝑋 Faith 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Faith 𝑌))
3937, 38sylib 218 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Faith 𝑌))
4036, 39elind 4210 . . . . . . . 8 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
41 vex 3482 . . . . . . . . . . 11 𝑓 ∈ V
4215fvexi 6921 . . . . . . . . . . . 12 𝑅 ∈ V
4342, 42mpoex 8103 . . . . . . . . . . 11 (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ∈ V
4441, 43op1st 8021 . . . . . . . . . 10 (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩) = 𝑓
45 f1oeq1 6837 . . . . . . . . . 10 ((1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩) = 𝑓 → ((1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆𝑓:𝑅1-1-onto𝑆))
4644, 45ax-mp 5 . . . . . . . . 9 ((1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆𝑓:𝑅1-1-onto𝑆)
4725, 46sylibr 234 . . . . . . . 8 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆)
4840, 47jca 511 . . . . . . 7 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆))
494, 2, 15, 21, 3, 7, 8, 1catciso 18165 . . . . . . . 8 (𝜑 → (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆)))
5049biimpar 477 . . . . . . 7 ((𝜑 ∧ (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌))
5148, 50syldan 591 . . . . . 6 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌))
52 eleq1 2827 . . . . . 6 (𝑎 = ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌)))
5311, 51, 52spcedv 3598 . . . . 5 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))
5453ex 412 . . . 4 (𝜑 → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
5554exlimdv 1931 . . 3 (𝜑 → (∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
56 fvexd 6922 . . . . . 6 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎) ∈ V)
57 relfull 17962 . . . . . . . . . 10 Rel (𝑋 Full 𝑌)
584, 2, 15, 21, 3, 7, 8, 1catciso 18165 . . . . . . . . . . . . 13 (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑎):𝑅1-1-onto𝑆)))
5958biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑎):𝑅1-1-onto𝑆))
6059simpld 494 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
6160elin1d 4214 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ (𝑋 Full 𝑌))
62 1st2ndbr 8066 . . . . . . . . . 10 ((Rel (𝑋 Full 𝑌) ∧ 𝑎 ∈ (𝑋 Full 𝑌)) → (1st𝑎)(𝑋 Full 𝑌)(2nd𝑎))
6357, 61, 62sylancr 587 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎)(𝑋 Full 𝑌)(2nd𝑎))
6418adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ ThinCat)
65 fullfunc 17960 . . . . . . . . . . . 12 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
6665ssbri 5193 . . . . . . . . . . 11 ((1st𝑎)(𝑋 Full 𝑌)(2nd𝑎) → (1st𝑎)(𝑋 Func 𝑌)(2nd𝑎))
6763, 66syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎)(𝑋 Func 𝑌)(2nd𝑎))
6815, 16, 17, 64, 67fullthinc 48846 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ((1st𝑎)(𝑋 Full 𝑌)(2nd𝑎) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅)))
6963, 68mpbid 232 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅))
7067adantr 480 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝑎)(𝑋 Func 𝑌)(2nd𝑎))
71 simprl 771 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
72 simprr 773 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
7315, 17, 16, 70, 71, 72funcf2 17919 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝑎)𝑦):(𝑥𝐻𝑦)⟶(((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)))
7473f002 48684 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
7574ralrimivva 3200 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥𝑅𝑦𝑅 ((((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
76 2ralbiim 3130 . . . . . . . 8 (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ∧ ∀𝑥𝑅𝑦𝑅 ((((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)))
7769, 75, 76sylanbrc 583 . . . . . . 7 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅))
7859simprd 495 . . . . . . 7 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎):𝑅1-1-onto𝑆)
7977, 78jca 511 . . . . . 6 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ∧ (1st𝑎):𝑅1-1-onto𝑆))
80 fveq1 6906 . . . . . . . . . . 11 (𝑓 = (1st𝑎) → (𝑓𝑥) = ((1st𝑎)‘𝑥))
81 fveq1 6906 . . . . . . . . . . 11 (𝑓 = (1st𝑎) → (𝑓𝑦) = ((1st𝑎)‘𝑦))
8280, 81oveq12d 7449 . . . . . . . . . 10 (𝑓 = (1st𝑎) → ((𝑓𝑥)𝐽(𝑓𝑦)) = (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)))
8382eqeq1d 2737 . . . . . . . . 9 (𝑓 = (1st𝑎) → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅))
8483bibi2d 342 . . . . . . . 8 (𝑓 = (1st𝑎) → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅)))
85842ralbidv 3219 . . . . . . 7 (𝑓 = (1st𝑎) → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅)))
86 f1oeq1 6837 . . . . . . 7 (𝑓 = (1st𝑎) → (𝑓:𝑅1-1-onto𝑆 ↔ (1st𝑎):𝑅1-1-onto𝑆))
8785, 86anbi12d 632 . . . . . 6 (𝑓 = (1st𝑎) → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ∧ (1st𝑎):𝑅1-1-onto𝑆)))
8856, 79, 87spcedv 3598 . . . . 5 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆))
8988ex 412 . . . 4 (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
9089exlimdv 1931 . . 3 (𝜑 → (∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
9155, 90impbid 212 . 2 (𝜑 → (∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
929, 91bitr4d 282 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  Vcvv 3478  cin 3962  c0 4339  cop 4637   class class class wbr 5148   × cxp 5687  Rel wrel 5694  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  Basecbs 17245  Hom chom 17309  Catccat 17709  Isociso 17794  𝑐 ccic 17843   Func cfunc 17905   Full cful 17956   Faith cfth 17957  CatCatccatc 18152  ThinCatcthinc 48819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-hom 17322  df-cco 17323  df-cat 17713  df-cid 17714  df-sect 17795  df-inv 17796  df-iso 17797  df-cic 17844  df-func 17909  df-idfu 17910  df-cofu 17911  df-full 17958  df-fth 17959  df-catc 18153  df-thinc 48820
This theorem is referenced by:  thinccisod  48850
  Copyright terms: Public domain W3C validator