Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . 3
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
2 | | thincciso.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
3 | | thincciso.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | | thincciso.c |
. . . . 5
⊢ 𝐶 = (CatCat‘𝑈) |
5 | 4 | catccat 17851 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | | thincciso.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | thincciso.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
9 | 1, 2, 6, 7, 8 | cic 17539 |
. 2
⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
10 | | opex 5382 |
. . . . . . 7
⊢
〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ V |
11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ V) |
12 | | biimp 214 |
. . . . . . . . . . . . 13
⊢ (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅)) |
13 | 12 | 2ralimi 3120 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅)) |
14 | 13 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅)) |
15 | | thincciso.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (Base‘𝑋) |
16 | | thincciso.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (Hom ‘𝑌) |
17 | | thincciso.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (Hom ‘𝑋) |
18 | | thincciso.yt |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ ThinCat) |
19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑌 ∈ ThinCat) |
20 | | eqid 2733 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) = (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) |
21 | | thincciso.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (Base‘𝑌) |
22 | | thincciso.xt |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ ThinCat) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑋 ∈ ThinCat) |
24 | 23 | thinccd 46346 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑋 ∈ Cat) |
25 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓:𝑅–1-1-onto→𝑆) |
26 | | f1of 6734 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑅–1-1-onto→𝑆 → 𝑓:𝑅⟶𝑆) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓:𝑅⟶𝑆) |
28 | | biimpr 219 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
29 | 28 | 2ralimi 3120 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
30 | 29 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
31 | 15, 21, 17, 16, 24, 19, 27, 20, 30 | functhinc 46366 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (𝑓(𝑋 Func 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) = (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))))) |
32 | 20, 31 | mpbiri 257 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓(𝑋 Func 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))) |
33 | 15, 16, 17, 19, 32 | fullthinc 46367 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (𝑓(𝑋 Full 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅))) |
34 | 14, 33 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓(𝑋 Full 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))) |
35 | | df-br 5078 |
. . . . . . . . . 10
⊢ (𝑓(𝑋 Full 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Full 𝑌)) |
36 | 34, 35 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Full 𝑌)) |
37 | 23, 32 | thincfth 46369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓(𝑋 Faith 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))) |
38 | | df-br 5078 |
. . . . . . . . . 10
⊢ (𝑓(𝑋 Faith 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Faith 𝑌)) |
39 | 37, 38 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Faith 𝑌)) |
40 | 36, 39 | elind 4131 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
41 | | vex 3438 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
42 | 15 | fvexi 6806 |
. . . . . . . . . . . 12
⊢ 𝑅 ∈ V |
43 | 42, 42 | mpoex 7940 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ∈ V |
44 | 41, 43 | op1st 7859 |
. . . . . . . . . 10
⊢
(1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉) = 𝑓 |
45 | | f1oeq1 6722 |
. . . . . . . . . 10
⊢
((1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉) = 𝑓 → ((1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆 ↔ 𝑓:𝑅–1-1-onto→𝑆)) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . . 9
⊢
((1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆 ↔ 𝑓:𝑅–1-1-onto→𝑆) |
47 | 25, 46 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (1st
‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆) |
48 | 40, 47 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆)) |
49 | 4, 2, 15, 21, 3, 7, 8, 1 | catciso 17854 |
. . . . . . . 8
⊢ (𝜑 → (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆))) |
50 | 49 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) |
51 | 48, 50 | syldan 590 |
. . . . . 6
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) |
52 | | eleq1 2821 |
. . . . . 6
⊢ (𝑎 = 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌))) |
53 | 11, 51, 52 | spcedv 3539 |
. . . . 5
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) |
54 | 53 | ex 412 |
. . . 4
⊢ (𝜑 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
55 | 54 | exlimdv 1932 |
. . 3
⊢ (𝜑 → (∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
56 | | fvexd 6807 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎) ∈ V) |
57 | | relfull 17652 |
. . . . . . . . . 10
⊢ Rel
(𝑋 Full 𝑌) |
58 | 4, 2, 15, 21, 3, 7, 8, 1 | catciso 17854 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝑎):𝑅–1-1-onto→𝑆))) |
59 | 58 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝑎):𝑅–1-1-onto→𝑆)) |
60 | 59 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
61 | 60 | elin1d 4135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ (𝑋 Full 𝑌)) |
62 | | 1st2ndbr 7903 |
. . . . . . . . . 10
⊢ ((Rel
(𝑋 Full 𝑌) ∧ 𝑎 ∈ (𝑋 Full 𝑌)) → (1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎)) |
63 | 57, 61, 62 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎)) |
64 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ ThinCat) |
65 | | fullfunc 17650 |
. . . . . . . . . . . 12
⊢ (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌) |
66 | 65 | ssbri 5122 |
. . . . . . . . . . 11
⊢
((1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎) → (1st ‘𝑎)(𝑋 Func 𝑌)(2nd ‘𝑎)) |
67 | 63, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎)(𝑋 Func 𝑌)(2nd ‘𝑎)) |
68 | 15, 16, 17, 64, 67 | fullthinc 46367 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ((1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅))) |
69 | 63, 68 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅)) |
70 | 67 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (1st ‘𝑎)(𝑋 Func 𝑌)(2nd ‘𝑎)) |
71 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
72 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
73 | 15, 17, 16, 70, 71, 72 | funcf2 17611 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(2nd ‘𝑎)𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦))) |
74 | 73 | f002 46221 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
75 | 74 | ralrimivva 3191 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
76 | | 2ralbiim 3123 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))) |
77 | 69, 75, 76 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅)) |
78 | 59 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎):𝑅–1-1-onto→𝑆) |
79 | 77, 78 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ∧ (1st
‘𝑎):𝑅–1-1-onto→𝑆)) |
80 | | fveq1 6791 |
. . . . . . . . . . 11
⊢ (𝑓 = (1st ‘𝑎) → (𝑓‘𝑥) = ((1st ‘𝑎)‘𝑥)) |
81 | | fveq1 6791 |
. . . . . . . . . . 11
⊢ (𝑓 = (1st ‘𝑎) → (𝑓‘𝑦) = ((1st ‘𝑎)‘𝑦)) |
82 | 80, 81 | oveq12d 7313 |
. . . . . . . . . 10
⊢ (𝑓 = (1st ‘𝑎) → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = (((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦))) |
83 | 82 | eqeq1d 2735 |
. . . . . . . . 9
⊢ (𝑓 = (1st ‘𝑎) → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅)) |
84 | 83 | bibi2d 342 |
. . . . . . . 8
⊢ (𝑓 = (1st ‘𝑎) → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅))) |
85 | 84 | 2ralbidv 3206 |
. . . . . . 7
⊢ (𝑓 = (1st ‘𝑎) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅))) |
86 | | f1oeq1 6722 |
. . . . . . 7
⊢ (𝑓 = (1st ‘𝑎) → (𝑓:𝑅–1-1-onto→𝑆 ↔ (1st
‘𝑎):𝑅–1-1-onto→𝑆)) |
87 | 85, 86 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = (1st ‘𝑎) → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ∧ (1st
‘𝑎):𝑅–1-1-onto→𝑆))) |
88 | 56, 79, 87 | spcedv 3539 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
89 | 88 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
90 | 89 | exlimdv 1932 |
. . 3
⊢ (𝜑 → (∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
91 | 55, 90 | impbid 211 |
. 2
⊢ (𝜑 → (∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
92 | 9, 91 | bitr4d 281 |
1
⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |