Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincciso Structured version   Visualization version   GIF version

Theorem thincciso 48716
Description: Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Oct-2024.)
Hypotheses
Ref Expression
thincciso.c 𝐶 = (CatCat‘𝑈)
thincciso.b 𝐵 = (Base‘𝐶)
thincciso.r 𝑅 = (Base‘𝑋)
thincciso.s 𝑆 = (Base‘𝑌)
thincciso.h 𝐻 = (Hom ‘𝑋)
thincciso.j 𝐽 = (Hom ‘𝑌)
thincciso.u (𝜑𝑈𝑉)
thincciso.x (𝜑𝑋𝐵)
thincciso.y (𝜑𝑌𝐵)
thincciso.xt (𝜑𝑋 ∈ ThinCat)
thincciso.yt (𝜑𝑌 ∈ ThinCat)
Assertion
Ref Expression
thincciso (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
Distinct variable groups:   𝐶,𝑓,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦   𝑓,𝐽,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑆,𝑓   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem thincciso
Dummy variables 𝑎 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
2 thincciso.b . . 3 𝐵 = (Base‘𝐶)
3 thincciso.u . . . 4 (𝜑𝑈𝑉)
4 thincciso.c . . . . 5 𝐶 = (CatCat‘𝑈)
54catccat 18175 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 thincciso.x . . 3 (𝜑𝑋𝐵)
8 thincciso.y . . 3 (𝜑𝑌𝐵)
91, 2, 6, 7, 8cic 17860 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
10 opex 5484 . . . . . . 7 𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ V
1110a1i 11 . . . . . 6 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ V)
12 biimp 215 . . . . . . . . . . . . 13 (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅))
13122ralimi 3129 . . . . . . . . . . . 12 (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅))
1413ad2antrl 727 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅))
15 thincciso.r . . . . . . . . . . . 12 𝑅 = (Base‘𝑋)
16 thincciso.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝑌)
17 thincciso.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝑋)
18 thincciso.yt . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ThinCat)
1918adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑌 ∈ ThinCat)
20 eqid 2740 . . . . . . . . . . . . 13 (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) = (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))
21 thincciso.s . . . . . . . . . . . . . 14 𝑆 = (Base‘𝑌)
22 thincciso.xt . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ThinCat)
2322adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑋 ∈ ThinCat)
2423thinccd 48692 . . . . . . . . . . . . . 14 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑋 ∈ Cat)
25 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓:𝑅1-1-onto𝑆)
26 f1of 6862 . . . . . . . . . . . . . . 15 (𝑓:𝑅1-1-onto𝑆𝑓:𝑅𝑆)
2725, 26syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓:𝑅𝑆)
28 biimpr 220 . . . . . . . . . . . . . . . 16 (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
29282ralimi 3129 . . . . . . . . . . . . . . 15 (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) → ∀𝑥𝑅𝑦𝑅 (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
3029ad2antrl 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ∀𝑥𝑅𝑦𝑅 (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
3115, 21, 17, 16, 24, 19, 27, 20, 30functhinc 48712 . . . . . . . . . . . . 13 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (𝑓(𝑋 Func 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) = (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))))
3220, 31mpbiri 258 . . . . . . . . . . . 12 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓(𝑋 Func 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))))
3315, 16, 17, 19, 32fullthinc 48713 . . . . . . . . . . 11 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (𝑓(𝑋 Full 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅)))
3414, 33mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓(𝑋 Full 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))))
35 df-br 5167 . . . . . . . . . 10 (𝑓(𝑋 Full 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Full 𝑌))
3634, 35sylib 218 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Full 𝑌))
3723, 32thincfth 48715 . . . . . . . . . 10 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → 𝑓(𝑋 Faith 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))))
38 df-br 5167 . . . . . . . . . 10 (𝑓(𝑋 Faith 𝑌)(𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ↔ ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Faith 𝑌))
3937, 38sylib 218 . . . . . . . . 9 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋 Faith 𝑌))
4036, 39elind 4223 . . . . . . . 8 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
41 vex 3492 . . . . . . . . . . 11 𝑓 ∈ V
4215fvexi 6934 . . . . . . . . . . . 12 𝑅 ∈ V
4342, 42mpoex 8120 . . . . . . . . . . 11 (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤)))) ∈ V
4441, 43op1st 8038 . . . . . . . . . 10 (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩) = 𝑓
45 f1oeq1 6850 . . . . . . . . . 10 ((1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩) = 𝑓 → ((1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆𝑓:𝑅1-1-onto𝑆))
4644, 45ax-mp 5 . . . . . . . . 9 ((1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆𝑓:𝑅1-1-onto𝑆)
4725, 46sylibr 234 . . . . . . . 8 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆)
4840, 47jca 511 . . . . . . 7 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆))
494, 2, 15, 21, 3, 7, 8, 1catciso 18178 . . . . . . . 8 (𝜑 → (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆)))
5049biimpar 477 . . . . . . 7 ((𝜑 ∧ (⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩):𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌))
5148, 50syldan 590 . . . . . 6 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌))
52 eleq1 2832 . . . . . 6 (𝑎 = ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ ⟨𝑓, (𝑧𝑅, 𝑤𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓𝑧)𝐽(𝑓𝑤))))⟩ ∈ (𝑋(Iso‘𝐶)𝑌)))
5311, 51, 52spcedv 3611 . . . . 5 ((𝜑 ∧ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))
5453ex 412 . . . 4 (𝜑 → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
5554exlimdv 1932 . . 3 (𝜑 → (∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
56 fvexd 6935 . . . . . 6 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎) ∈ V)
57 relfull 17975 . . . . . . . . . 10 Rel (𝑋 Full 𝑌)
584, 2, 15, 21, 3, 7, 8, 1catciso 18178 . . . . . . . . . . . . 13 (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑎):𝑅1-1-onto𝑆)))
5958biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝑎):𝑅1-1-onto𝑆))
6059simpld 494 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
6160elin1d 4227 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ (𝑋 Full 𝑌))
62 1st2ndbr 8083 . . . . . . . . . 10 ((Rel (𝑋 Full 𝑌) ∧ 𝑎 ∈ (𝑋 Full 𝑌)) → (1st𝑎)(𝑋 Full 𝑌)(2nd𝑎))
6357, 61, 62sylancr 586 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎)(𝑋 Full 𝑌)(2nd𝑎))
6418adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ ThinCat)
65 fullfunc 17973 . . . . . . . . . . . 12 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
6665ssbri 5211 . . . . . . . . . . 11 ((1st𝑎)(𝑋 Full 𝑌)(2nd𝑎) → (1st𝑎)(𝑋 Func 𝑌)(2nd𝑎))
6763, 66syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎)(𝑋 Func 𝑌)(2nd𝑎))
6815, 16, 17, 64, 67fullthinc 48713 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ((1st𝑎)(𝑋 Full 𝑌)(2nd𝑎) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅)))
6963, 68mpbid 232 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅))
7067adantr 480 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝑎)(𝑋 Func 𝑌)(2nd𝑎))
71 simprl 770 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
72 simprr 772 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
7315, 17, 16, 70, 71, 72funcf2 17932 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝑎)𝑦):(𝑥𝐻𝑦)⟶(((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)))
7473f002 48567 . . . . . . . . 9 (((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
7574ralrimivva 3208 . . . . . . . 8 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥𝑅𝑦𝑅 ((((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))
76 2ralbiim 3138 . . . . . . . 8 (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ∧ ∀𝑥𝑅𝑦𝑅 ((((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)))
7769, 75, 76sylanbrc 582 . . . . . . 7 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅))
7859simprd 495 . . . . . . 7 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st𝑎):𝑅1-1-onto𝑆)
7977, 78jca 511 . . . . . 6 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ∧ (1st𝑎):𝑅1-1-onto𝑆))
80 fveq1 6919 . . . . . . . . . . 11 (𝑓 = (1st𝑎) → (𝑓𝑥) = ((1st𝑎)‘𝑥))
81 fveq1 6919 . . . . . . . . . . 11 (𝑓 = (1st𝑎) → (𝑓𝑦) = ((1st𝑎)‘𝑦))
8280, 81oveq12d 7466 . . . . . . . . . 10 (𝑓 = (1st𝑎) → ((𝑓𝑥)𝐽(𝑓𝑦)) = (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)))
8382eqeq1d 2742 . . . . . . . . 9 (𝑓 = (1st𝑎) → (((𝑓𝑥)𝐽(𝑓𝑦)) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅))
8483bibi2d 342 . . . . . . . 8 (𝑓 = (1st𝑎) → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅)))
85842ralbidv 3227 . . . . . . 7 (𝑓 = (1st𝑎) → (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ↔ ∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅)))
86 f1oeq1 6850 . . . . . . 7 (𝑓 = (1st𝑎) → (𝑓:𝑅1-1-onto𝑆 ↔ (1st𝑎):𝑅1-1-onto𝑆))
8785, 86anbi12d 631 . . . . . 6 (𝑓 = (1st𝑎) → ((∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ (∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st𝑎)‘𝑥)𝐽((1st𝑎)‘𝑦)) = ∅) ∧ (1st𝑎):𝑅1-1-onto𝑆)))
8856, 79, 87spcedv 3611 . . . . 5 ((𝜑𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆))
8988ex 412 . . . 4 (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
9089exlimdv 1932 . . 3 (𝜑 → (∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
9155, 90impbid 212 . 2 (𝜑 → (∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆) ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)))
929, 91bitr4d 282 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cin 3975  c0 4352  cop 4654   class class class wbr 5166   × cxp 5698  Rel wrel 5705  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  Basecbs 17258  Hom chom 17322  Catccat 17722  Isociso 17807  𝑐 ccic 17856   Func cfunc 17918   Full cful 17969   Faith cfth 17970  CatCatccatc 18165  ThinCatcthinc 48686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-sect 17808  df-inv 17809  df-iso 17810  df-cic 17857  df-func 17922  df-idfu 17923  df-cofu 17924  df-full 17971  df-fth 17972  df-catc 18166  df-thinc 48687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator