| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
| 2 | | thincciso.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 3 | | thincciso.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 4 | | thincciso.c |
. . . . 5
⊢ 𝐶 = (CatCat‘𝑈) |
| 5 | 4 | catccat 18154 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | | thincciso.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 8 | | thincciso.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 9 | 1, 2, 6, 7, 8 | cic 17844 |
. 2
⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
| 10 | | opex 5468 |
. . . . . . 7
⊢
〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ V |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ V) |
| 12 | | biimp 215 |
. . . . . . . . . . . . 13
⊢ (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅)) |
| 13 | 12 | 2ralimi 3122 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅)) |
| 14 | 13 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅)) |
| 15 | | thincciso.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (Base‘𝑋) |
| 16 | | thincciso.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (Hom ‘𝑌) |
| 17 | | thincciso.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (Hom ‘𝑋) |
| 18 | | thincciso.yt |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ ThinCat) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑌 ∈ ThinCat) |
| 20 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) = (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) |
| 21 | | thincciso.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (Base‘𝑌) |
| 22 | | thincciso.xt |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ ThinCat) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑋 ∈ ThinCat) |
| 24 | 23 | thinccd 49097 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑋 ∈ Cat) |
| 25 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓:𝑅–1-1-onto→𝑆) |
| 26 | | f1of 6847 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑅–1-1-onto→𝑆 → 𝑓:𝑅⟶𝑆) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓:𝑅⟶𝑆) |
| 28 | | biimpr 220 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
| 29 | 28 | 2ralimi 3122 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
| 30 | 29 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
| 31 | 15, 21, 17, 16, 24, 19, 27, 20, 30 | functhinc 49122 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (𝑓(𝑋 Func 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) = (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))))) |
| 32 | 20, 31 | mpbiri 258 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓(𝑋 Func 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))) |
| 33 | 15, 16, 17, 19, 32 | fullthinc 49124 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (𝑓(𝑋 Full 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅))) |
| 34 | 14, 33 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓(𝑋 Full 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))) |
| 35 | | df-br 5143 |
. . . . . . . . . 10
⊢ (𝑓(𝑋 Full 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Full 𝑌)) |
| 36 | 34, 35 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Full 𝑌)) |
| 37 | 23, 32 | thincfth 49126 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 𝑓(𝑋 Faith 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))) |
| 38 | | df-br 5143 |
. . . . . . . . . 10
⊢ (𝑓(𝑋 Faith 𝑌)(𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ↔ 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Faith 𝑌)) |
| 39 | 37, 38 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋 Faith 𝑌)) |
| 40 | 36, 39 | elind 4199 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
| 41 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
| 42 | 15 | fvexi 6919 |
. . . . . . . . . . . 12
⊢ 𝑅 ∈ V |
| 43 | 42, 42 | mpoex 8105 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤)))) ∈ V |
| 44 | 41, 43 | op1st 8023 |
. . . . . . . . . 10
⊢
(1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉) = 𝑓 |
| 45 | | f1oeq1 6835 |
. . . . . . . . . 10
⊢
((1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉) = 𝑓 → ((1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆 ↔ 𝑓:𝑅–1-1-onto→𝑆)) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . . . . 9
⊢
((1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆 ↔ 𝑓:𝑅–1-1-onto→𝑆) |
| 47 | 25, 46 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (1st
‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆) |
| 48 | 40, 47 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆)) |
| 49 | 4, 2, 15, 21, 3, 7, 8, 1 | catciso 18157 |
. . . . . . . 8
⊢ (𝜑 → (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆))) |
| 50 | 49 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ (〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉):𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) |
| 51 | 48, 50 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) |
| 52 | | eleq1 2828 |
. . . . . 6
⊢ (𝑎 = 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ 〈𝑓, (𝑧 ∈ 𝑅, 𝑤 ∈ 𝑅 ↦ ((𝑧𝐻𝑤) × ((𝑓‘𝑧)𝐽(𝑓‘𝑤))))〉 ∈ (𝑋(Iso‘𝐶)𝑌))) |
| 53 | 11, 51, 52 | spcedv 3597 |
. . . . 5
⊢ ((𝜑 ∧ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) |
| 54 | 53 | ex 412 |
. . . 4
⊢ (𝜑 → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
| 55 | 54 | exlimdv 1932 |
. . 3
⊢ (𝜑 → (∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) → ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
| 56 | | fvexd 6920 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎) ∈ V) |
| 57 | | relfull 17956 |
. . . . . . . . . 10
⊢ Rel
(𝑋 Full 𝑌) |
| 58 | 4, 2, 15, 21, 3, 7, 8, 1 | catciso 18157 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) ↔ (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝑎):𝑅–1-1-onto→𝑆))) |
| 59 | 58 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝑎):𝑅–1-1-onto→𝑆)) |
| 60 | 59 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
| 61 | 60 | elin1d 4203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑎 ∈ (𝑋 Full 𝑌)) |
| 62 | | 1st2ndbr 8068 |
. . . . . . . . . 10
⊢ ((Rel
(𝑋 Full 𝑌) ∧ 𝑎 ∈ (𝑋 Full 𝑌)) → (1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎)) |
| 63 | 57, 61, 62 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎)) |
| 64 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ ThinCat) |
| 65 | | fullfunc 17954 |
. . . . . . . . . . . 12
⊢ (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌) |
| 66 | 65 | ssbri 5187 |
. . . . . . . . . . 11
⊢
((1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎) → (1st ‘𝑎)(𝑋 Func 𝑌)(2nd ‘𝑎)) |
| 67 | 63, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎)(𝑋 Func 𝑌)(2nd ‘𝑎)) |
| 68 | 15, 16, 17, 64, 67 | fullthinc 49124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ((1st ‘𝑎)(𝑋 Full 𝑌)(2nd ‘𝑎) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅))) |
| 69 | 63, 68 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅)) |
| 70 | 67 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (1st ‘𝑎)(𝑋 Func 𝑌)(2nd ‘𝑎)) |
| 71 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
| 72 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
| 73 | 15, 17, 16, 70, 71, 72 | funcf2 17914 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(2nd ‘𝑎)𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦))) |
| 74 | 73 | f002 48768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
| 75 | 74 | ralrimivva 3201 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) |
| 76 | | 2ralbiim 3131 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ → (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))) |
| 77 | 69, 75, 76 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅)) |
| 78 | 59 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (1st ‘𝑎):𝑅–1-1-onto→𝑆) |
| 79 | 77, 78 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ∧ (1st
‘𝑎):𝑅–1-1-onto→𝑆)) |
| 80 | | fveq1 6904 |
. . . . . . . . . . 11
⊢ (𝑓 = (1st ‘𝑎) → (𝑓‘𝑥) = ((1st ‘𝑎)‘𝑥)) |
| 81 | | fveq1 6904 |
. . . . . . . . . . 11
⊢ (𝑓 = (1st ‘𝑎) → (𝑓‘𝑦) = ((1st ‘𝑎)‘𝑦)) |
| 82 | 80, 81 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (𝑓 = (1st ‘𝑎) → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = (((1st ‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦))) |
| 83 | 82 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑓 = (1st ‘𝑎) → (((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅)) |
| 84 | 83 | bibi2d 342 |
. . . . . . . 8
⊢ (𝑓 = (1st ‘𝑎) → (((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅))) |
| 85 | 84 | 2ralbidv 3220 |
. . . . . . 7
⊢ (𝑓 = (1st ‘𝑎) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅))) |
| 86 | | f1oeq1 6835 |
. . . . . . 7
⊢ (𝑓 = (1st ‘𝑎) → (𝑓:𝑅–1-1-onto→𝑆 ↔ (1st
‘𝑎):𝑅–1-1-onto→𝑆)) |
| 87 | 85, 86 | anbi12d 632 |
. . . . . 6
⊢ (𝑓 = (1st ‘𝑎) → ((∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ (((1st
‘𝑎)‘𝑥)𝐽((1st ‘𝑎)‘𝑦)) = ∅) ∧ (1st
‘𝑎):𝑅–1-1-onto→𝑆))) |
| 88 | 56, 79, 87 | spcedv 3597 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌)) → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆)) |
| 89 | 88 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
| 90 | 89 | exlimdv 1932 |
. . 3
⊢ (𝜑 → (∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌) → ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |
| 91 | 55, 90 | impbid 212 |
. 2
⊢ (𝜑 → (∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆) ↔ ∃𝑎 𝑎 ∈ (𝑋(Iso‘𝐶)𝑌))) |
| 92 | 9, 91 | bitr4d 282 |
1
⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) |