MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbiim Structured version   Visualization version   GIF version

Theorem ralbiim 3111
Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim 1890. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
ralbiim (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))

Proof of Theorem ralbiim
StepHypRef Expression
1 dfbi2 473 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21ralbii 3091 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ((𝜑𝜓) ∧ (𝜓𝜑)))
3 r19.26 3109 . 2 (∀𝑥𝐴 ((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
42, 3bitri 274 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 395  df-ral 3060
This theorem is referenced by:  2ralbiim  3130  eqreu  3724  isclo2  22812  chrelat4i  31893  hlateq  38573  ntrneik13  43151  ntrneix13  43152
  Copyright terms: Public domain W3C validator