| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralor | Structured version Visualization version GIF version | ||
| Description: Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 20-Nov-2024.) |
| Ref | Expression |
|---|---|
| 2ralor | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.32v 3179 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) | |
| 2 | orcom 870 | . . . 4 ⊢ ((𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜓 ∨ 𝜑)) | |
| 3 | 1, 2 | bitri 275 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜓 ∨ 𝜑)) |
| 4 | 3 | ralbii 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∨ 𝜑)) |
| 5 | r19.32v 3179 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∨ 𝜑) ↔ (∀𝑦 ∈ 𝐵 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑)) | |
| 6 | orcom 870 | . 2 ⊢ ((∀𝑦 ∈ 𝐵 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) | |
| 7 | 4, 5, 6 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∨ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ral 3051 |
| This theorem is referenced by: prmidl2 33410 ispridl2 37986 |
| Copyright terms: Public domain | W3C validator |