![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.32v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.32v 1938. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
r19.32v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21v 3178 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
2 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 2 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
4 | df-or 848 | . 2 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ral 3060 |
This theorem is referenced by: 2ralor 3229 iinun2 5078 iinuni 5103 axcontlem2 28995 axcontlem7 29000 disjnf 32590 lindslinindsimp2 48309 |
Copyright terms: Public domain | W3C validator |