Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.32v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.32v 1944. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
r19.32v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21v 3100 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
2 | df-or 844 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 2 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
4 | df-or 844 | . 2 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-ral 3068 |
This theorem is referenced by: 2ralor 3294 iinun2 4998 iinuni 5023 axcontlem2 27236 axcontlem7 27241 disjnf 30810 lindslinindsimp2 45692 |
Copyright terms: Public domain | W3C validator |