MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.32v Structured version   Visualization version   GIF version

Theorem r19.32v 3267
Description: Restricted quantifier version of 19.32v 1944. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
r19.32v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.32v
StepHypRef Expression
1 r19.21v 3100 . 2 (∀𝑥𝐴𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓))
2 df-or 844 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32ralbii 3090 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜑𝜓))
4 df-or 844 . 2 ((𝜑 ∨ ∀𝑥𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓))
51, 3, 43bitr4i 302 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-ral 3068
This theorem is referenced by:  2ralor  3294  iinun2  4998  iinuni  5023  axcontlem2  27236  axcontlem7  27241  disjnf  30810  lindslinindsimp2  45692
  Copyright terms: Public domain W3C validator