| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.32v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.32v 1939. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.32v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.21v 3167 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
| 2 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | 2 | ralbii 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
| 4 | df-or 848 | . 2 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ral 3051 |
| This theorem is referenced by: 2ralor 3218 iinun2 5053 iinuni 5078 axcontlem2 28911 axcontlem7 28916 disjnf 32519 lindslinindsimp2 48353 |
| Copyright terms: Public domain | W3C validator |