|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3an1rs | Structured version Visualization version GIF version | ||
| Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) | 
| Ref | Expression | 
|---|---|
| 3an1rs.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| 3an1rs | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3an1rs.1 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | 3exp1 1353 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | 
| 3 | 2 | com34 91 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) | 
| 4 | 3 | 3imp1 1348 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: odf1o2 19591 neiptopnei 23140 cnextcn 24075 nlpineqsn 37409 factwoffsmonot 42243 | 
| Copyright terms: Public domain | W3C validator |