MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3an1rs Structured version   Visualization version   GIF version

Theorem 3an1rs 1357
Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
3an1rs.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3an1rs (((𝜑𝜓𝜃) ∧ 𝜒) → 𝜏)

Proof of Theorem 3an1rs
StepHypRef Expression
1 3an1rs.1 . . . 4 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
213exp1 1350 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
32com34 91 . 2 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
433imp1 1345 1 (((𝜑𝜓𝜃) ∧ 𝜒) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  odf1o2  19093  neiptopnei  22191  cnextcn  23126  nlpineqsn  35506  factwoffsmonot  40091
  Copyright terms: Public domain W3C validator