MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1351
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 413 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1118 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  3an1rs  1358  funelss  7882  ltmpi  10671  cshf1  14534  lcmfunsnlem  16357  mulgaddcom  18738  mulginvcom  18739  symgfvne  18999  voliunlem3  24727  3cyclfrgrrn  28659  numclwwlk1lem2foa  28727  frgrregord013  28768  strlem3a  30623  hstrlem3a  30631  chirredlem1  30761  nn0prpwlem  34520  matunitlindflem1  35782  zerdivemp1x  36114  athgt  37479  paddasslem14  37856  paddidm  37864  tendospcanN  39046  jm2.26  40833  relexpxpmin  41307  0ellimcdiv  43172
  Copyright terms: Public domain W3C validator