MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1352
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 413 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  3an1rs  1359  funelss  8029  ltmpi  10895  cshf1  14756  lcmfunsnlem  16574  mulgaddcom  18972  mulginvcom  18973  symgfvne  19242  voliunlem3  25060  3cyclfrgrrn  29528  numclwwlk1lem2foa  29596  frgrregord013  29637  strlem3a  31492  hstrlem3a  31500  chirredlem1  31630  nn0prpwlem  35195  matunitlindflem1  36472  zerdivemp1x  36803  athgt  38315  paddasslem14  38692  paddidm  38700  tendospcanN  39882  jm2.26  41726  relexpxpmin  42453  0ellimcdiv  44351
  Copyright terms: Public domain W3C validator