Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version |
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 414 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: 3an1rs 1359 funelss 7920 ltmpi 10706 cshf1 14568 lcmfunsnlem 16391 mulgaddcom 18772 mulginvcom 18773 symgfvne 19033 voliunlem3 24761 3cyclfrgrrn 28695 numclwwlk1lem2foa 28763 frgrregord013 28804 strlem3a 30659 hstrlem3a 30667 chirredlem1 30797 nn0prpwlem 34556 matunitlindflem1 35817 zerdivemp1x 36149 athgt 37512 paddasslem14 37889 paddidm 37897 tendospcanN 39079 jm2.26 40862 relexpxpmin 41363 0ellimcdiv 43239 |
Copyright terms: Public domain | W3C validator |