MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  8046  ltmpi  10918  cshf1  14828  lcmfunsnlem  16660  mulgaddcom  19081  mulginvcom  19082  symgfvne  19362  voliunlem3  25505  3cyclfrgrrn  30267  numclwwlk1lem2foa  30335  frgrregord013  30376  strlem3a  32233  hstrlem3a  32241  chirredlem1  32371  nn0prpwlem  36340  matunitlindflem1  37640  zerdivemp1x  37971  athgt  39475  paddasslem14  39852  paddidm  39860  tendospcanN  41042  jm2.26  43026  relexpxpmin  43741  0ellimcdiv  45678  uhgrimisgrgric  47944  clnbgrgrimlem  47946
  Copyright terms: Public domain W3C validator