MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  7979  ltmpi  10795  cshf1  14717  lcmfunsnlem  16552  mulgaddcom  19011  mulginvcom  19012  symgfvne  19293  voliunlem3  25480  3cyclfrgrrn  30266  numclwwlk1lem2foa  30334  frgrregord013  30375  strlem3a  32232  hstrlem3a  32240  chirredlem1  32370  nn0prpwlem  36366  matunitlindflem1  37666  zerdivemp1x  37997  athgt  39565  paddasslem14  39942  paddidm  39950  tendospcanN  41132  jm2.26  43105  relexpxpmin  43820  0ellimcdiv  45757  uhgrimisgrgric  48041  clnbgrgrimlem  48043
  Copyright terms: Public domain W3C validator