| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 7979 ltmpi 10795 cshf1 14717 lcmfunsnlem 16552 mulgaddcom 19011 mulginvcom 19012 symgfvne 19293 voliunlem3 25480 3cyclfrgrrn 30266 numclwwlk1lem2foa 30334 frgrregord013 30375 strlem3a 32232 hstrlem3a 32240 chirredlem1 32370 nn0prpwlem 36366 matunitlindflem1 37666 zerdivemp1x 37997 athgt 39565 paddasslem14 39942 paddidm 39950 tendospcanN 41132 jm2.26 43105 relexpxpmin 43820 0ellimcdiv 45757 uhgrimisgrgric 48041 clnbgrgrimlem 48043 |
| Copyright terms: Public domain | W3C validator |