| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 7982 ltmpi 10798 cshf1 14716 lcmfunsnlem 16552 mulgaddcom 18977 mulginvcom 18978 symgfvne 19260 voliunlem3 25451 3cyclfrgrrn 30230 numclwwlk1lem2foa 30298 frgrregord013 30339 strlem3a 32196 hstrlem3a 32204 chirredlem1 32334 nn0prpwlem 36306 matunitlindflem1 37606 zerdivemp1x 37937 athgt 39445 paddasslem14 39822 paddidm 39830 tendospcanN 41012 jm2.26 42985 relexpxpmin 43700 0ellimcdiv 45640 uhgrimisgrgric 47925 clnbgrgrimlem 47927 |
| Copyright terms: Public domain | W3C validator |