| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 8046 ltmpi 10918 cshf1 14828 lcmfunsnlem 16660 mulgaddcom 19081 mulginvcom 19082 symgfvne 19362 voliunlem3 25505 3cyclfrgrrn 30267 numclwwlk1lem2foa 30335 frgrregord013 30376 strlem3a 32233 hstrlem3a 32241 chirredlem1 32371 nn0prpwlem 36340 matunitlindflem1 37640 zerdivemp1x 37971 athgt 39475 paddasslem14 39852 paddidm 39860 tendospcanN 41042 jm2.26 43026 relexpxpmin 43741 0ellimcdiv 45678 uhgrimisgrgric 47944 clnbgrgrimlem 47946 |
| Copyright terms: Public domain | W3C validator |