MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1352
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 414 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089
This theorem is referenced by:  3an1rs  1359  funelss  7920  ltmpi  10706  cshf1  14568  lcmfunsnlem  16391  mulgaddcom  18772  mulginvcom  18773  symgfvne  19033  voliunlem3  24761  3cyclfrgrrn  28695  numclwwlk1lem2foa  28763  frgrregord013  28804  strlem3a  30659  hstrlem3a  30667  chirredlem1  30797  nn0prpwlem  34556  matunitlindflem1  35817  zerdivemp1x  36149  athgt  37512  paddasslem14  37889  paddidm  37897  tendospcanN  39079  jm2.26  40862  relexpxpmin  41363  0ellimcdiv  43239
  Copyright terms: Public domain W3C validator