MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  8005  ltmpi  10833  cshf1  14751  lcmfunsnlem  16587  mulgaddcom  19012  mulginvcom  19013  symgfvne  19295  voliunlem3  25486  3cyclfrgrrn  30265  numclwwlk1lem2foa  30333  frgrregord013  30374  strlem3a  32231  hstrlem3a  32239  chirredlem1  32369  nn0prpwlem  36303  matunitlindflem1  37603  zerdivemp1x  37934  athgt  39443  paddasslem14  39820  paddidm  39828  tendospcanN  41010  jm2.26  42984  relexpxpmin  43699  0ellimcdiv  45640  uhgrimisgrgric  47924  clnbgrgrimlem  47926
  Copyright terms: Public domain W3C validator