MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  8005  ltmpi  10833  cshf1  14751  lcmfunsnlem  16587  mulgaddcom  19006  mulginvcom  19007  symgfvne  19287  voliunlem3  25429  3cyclfrgrrn  30188  numclwwlk1lem2foa  30256  frgrregord013  30297  strlem3a  32154  hstrlem3a  32162  chirredlem1  32292  nn0prpwlem  36283  matunitlindflem1  37583  zerdivemp1x  37914  athgt  39423  paddasslem14  39800  paddidm  39808  tendospcanN  40990  jm2.26  42964  relexpxpmin  43679  0ellimcdiv  45620  uhgrimisgrgric  47904  clnbgrgrimlem  47906
  Copyright terms: Public domain W3C validator