| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 8005 ltmpi 10833 cshf1 14751 lcmfunsnlem 16587 mulgaddcom 19012 mulginvcom 19013 symgfvne 19295 voliunlem3 25486 3cyclfrgrrn 30265 numclwwlk1lem2foa 30333 frgrregord013 30374 strlem3a 32231 hstrlem3a 32239 chirredlem1 32369 nn0prpwlem 36303 matunitlindflem1 37603 zerdivemp1x 37934 athgt 39443 paddasslem14 39820 paddidm 39828 tendospcanN 41010 jm2.26 42984 relexpxpmin 43699 0ellimcdiv 45640 uhgrimisgrgric 47924 clnbgrgrimlem 47926 |
| Copyright terms: Public domain | W3C validator |