MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1351
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1118 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1358  funelss  8070  ltmpi  10941  cshf1  14844  lcmfunsnlem  16674  mulgaddcom  19128  mulginvcom  19129  symgfvne  19412  voliunlem3  25600  3cyclfrgrrn  30314  numclwwlk1lem2foa  30382  frgrregord013  30423  strlem3a  32280  hstrlem3a  32288  chirredlem1  32418  nn0prpwlem  36304  matunitlindflem1  37602  zerdivemp1x  37933  athgt  39438  paddasslem14  39815  paddidm  39823  tendospcanN  41005  jm2.26  42990  relexpxpmin  43706  0ellimcdiv  45604  uhgrimisgrgric  47836  clnbgrgrimlem  47838
  Copyright terms: Public domain W3C validator