MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  8029  ltmpi  10864  cshf1  14782  lcmfunsnlem  16618  mulgaddcom  19037  mulginvcom  19038  symgfvne  19318  voliunlem3  25460  3cyclfrgrrn  30222  numclwwlk1lem2foa  30290  frgrregord013  30331  strlem3a  32188  hstrlem3a  32196  chirredlem1  32326  nn0prpwlem  36317  matunitlindflem1  37617  zerdivemp1x  37948  athgt  39457  paddasslem14  39834  paddidm  39842  tendospcanN  41024  jm2.26  42998  relexpxpmin  43713  0ellimcdiv  45654  uhgrimisgrgric  47935  clnbgrgrimlem  47937
  Copyright terms: Public domain W3C validator