Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version |
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3exp 1117 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3an1rs 1357 funelss 7874 ltmpi 10644 cshf1 14504 lcmfunsnlem 16327 mulgaddcom 18708 mulginvcom 18709 symgfvne 18969 voliunlem3 24697 3cyclfrgrrn 28629 numclwwlk1lem2foa 28697 frgrregord013 28738 strlem3a 30593 hstrlem3a 30601 chirredlem1 30731 nn0prpwlem 34490 matunitlindflem1 35752 zerdivemp1x 36084 athgt 37449 paddasslem14 37826 paddidm 37834 tendospcanN 39016 jm2.26 40804 relexpxpmin 41278 0ellimcdiv 43144 |
Copyright terms: Public domain | W3C validator |