MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  7982  ltmpi  10798  cshf1  14716  lcmfunsnlem  16552  mulgaddcom  18977  mulginvcom  18978  symgfvne  19260  voliunlem3  25451  3cyclfrgrrn  30230  numclwwlk1lem2foa  30298  frgrregord013  30339  strlem3a  32196  hstrlem3a  32204  chirredlem1  32334  nn0prpwlem  36306  matunitlindflem1  37606  zerdivemp1x  37937  athgt  39445  paddasslem14  39822  paddidm  39830  tendospcanN  41012  jm2.26  42985  relexpxpmin  43700  0ellimcdiv  45640  uhgrimisgrgric  47925  clnbgrgrimlem  47927
  Copyright terms: Public domain W3C validator