| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 8005 ltmpi 10833 cshf1 14751 lcmfunsnlem 16587 mulgaddcom 19006 mulginvcom 19007 symgfvne 19287 voliunlem3 25429 3cyclfrgrrn 30188 numclwwlk1lem2foa 30256 frgrregord013 30297 strlem3a 32154 hstrlem3a 32162 chirredlem1 32292 nn0prpwlem 36283 matunitlindflem1 37583 zerdivemp1x 37914 athgt 39423 paddasslem14 39800 paddidm 39808 tendospcanN 40990 jm2.26 42964 relexpxpmin 43679 0ellimcdiv 45620 uhgrimisgrgric 47904 clnbgrgrimlem 47906 |
| Copyright terms: Public domain | W3C validator |