MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exp1 Structured version   Visualization version   GIF version

Theorem 3exp1 1353
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3exp1.1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
3exp1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3exp1
StepHypRef Expression
1 3exp1.1 . . 3 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
21ex 412 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
323exp 1119 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  funelss  8026  ltmpi  10857  cshf1  14775  lcmfunsnlem  16611  mulgaddcom  19030  mulginvcom  19031  symgfvne  19311  voliunlem3  25453  3cyclfrgrrn  30215  numclwwlk1lem2foa  30283  frgrregord013  30324  strlem3a  32181  hstrlem3a  32189  chirredlem1  32319  nn0prpwlem  36310  matunitlindflem1  37610  zerdivemp1x  37941  athgt  39450  paddasslem14  39827  paddidm  39835  tendospcanN  41017  jm2.26  42991  relexpxpmin  43706  0ellimcdiv  45647  uhgrimisgrgric  47931  clnbgrgrimlem  47933
  Copyright terms: Public domain W3C validator