![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version |
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3an1rs 1359 funelss 8088 ltmpi 10973 cshf1 14858 lcmfunsnlem 16688 mulgaddcom 19138 mulginvcom 19139 symgfvne 19422 voliunlem3 25606 3cyclfrgrrn 30318 numclwwlk1lem2foa 30386 frgrregord013 30427 strlem3a 32284 hstrlem3a 32292 chirredlem1 32422 nn0prpwlem 36288 matunitlindflem1 37576 zerdivemp1x 37907 athgt 39413 paddasslem14 39790 paddidm 39798 tendospcanN 40980 jm2.26 42959 relexpxpmin 43679 0ellimcdiv 45570 uhgrimisgrgric 47783 clnbgrgrimlem 47785 |
Copyright terms: Public domain | W3C validator |