![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version |
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 403 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3exp 1109 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1073 |
This theorem is referenced by: 3an1rs 1421 ltmpi 10063 cshf1 13967 lcmfunsnlem 15770 mulgaddcom 17961 mulginvcom 17962 symgfvne 18202 voliunlem3 23767 3cyclfrgrrn 27711 numclwwlk1lem2foa 27786 numclwwlk1lem2foaOLD 27787 frgrregord013 27844 strlem3a 29700 hstrlem3a 29708 chirredlem1 29838 nn0prpwlem 32913 matunitlindflem1 34040 zerdivemp1x 34379 athgt 35619 paddasslem14 35996 paddidm 36004 tendospcanN 37186 jm2.26 38542 relexpxpmin 38980 0ellimcdiv 40803 |
Copyright terms: Public domain | W3C validator |