| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 8026 ltmpi 10857 cshf1 14775 lcmfunsnlem 16611 mulgaddcom 19030 mulginvcom 19031 symgfvne 19311 voliunlem3 25453 3cyclfrgrrn 30215 numclwwlk1lem2foa 30283 frgrregord013 30324 strlem3a 32181 hstrlem3a 32189 chirredlem1 32319 nn0prpwlem 36310 matunitlindflem1 37610 zerdivemp1x 37941 athgt 39450 paddasslem14 39827 paddidm 39835 tendospcanN 41017 jm2.26 42991 relexpxpmin 43706 0ellimcdiv 45647 uhgrimisgrgric 47931 clnbgrgrimlem 47933 |
| Copyright terms: Public domain | W3C validator |