| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version | ||
| Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1119 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 funelss 8029 ltmpi 10864 cshf1 14782 lcmfunsnlem 16618 mulgaddcom 19037 mulginvcom 19038 symgfvne 19318 voliunlem3 25460 3cyclfrgrrn 30222 numclwwlk1lem2foa 30290 frgrregord013 30331 strlem3a 32188 hstrlem3a 32196 chirredlem1 32326 nn0prpwlem 36317 matunitlindflem1 37617 zerdivemp1x 37948 athgt 39457 paddasslem14 39834 paddidm 39842 tendospcanN 41024 jm2.26 42998 relexpxpmin 43713 0ellimcdiv 45654 uhgrimisgrgric 47935 clnbgrgrimlem 47937 |
| Copyright terms: Public domain | W3C validator |