Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version |
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 413 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3exp 1118 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3an1rs 1358 funelss 7882 ltmpi 10671 cshf1 14534 lcmfunsnlem 16357 mulgaddcom 18738 mulginvcom 18739 symgfvne 18999 voliunlem3 24727 3cyclfrgrrn 28659 numclwwlk1lem2foa 28727 frgrregord013 28768 strlem3a 30623 hstrlem3a 30631 chirredlem1 30761 nn0prpwlem 34520 matunitlindflem1 35782 zerdivemp1x 36114 athgt 37479 paddasslem14 37856 paddidm 37864 tendospcanN 39046 jm2.26 40833 relexpxpmin 41307 0ellimcdiv 43172 |
Copyright terms: Public domain | W3C validator |