![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exp1 | Structured version Visualization version GIF version |
Description: Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3exp1.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
3exp1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3exp 1118 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3an1rs 1358 funelss 8070 ltmpi 10941 cshf1 14844 lcmfunsnlem 16674 mulgaddcom 19128 mulginvcom 19129 symgfvne 19412 voliunlem3 25600 3cyclfrgrrn 30314 numclwwlk1lem2foa 30382 frgrregord013 30423 strlem3a 32280 hstrlem3a 32288 chirredlem1 32418 nn0prpwlem 36304 matunitlindflem1 37602 zerdivemp1x 37933 athgt 39438 paddasslem14 39815 paddidm 39823 tendospcanN 41005 jm2.26 42990 relexpxpmin 43706 0ellimcdiv 45604 uhgrimisgrgric 47836 clnbgrgrimlem 47838 |
Copyright terms: Public domain | W3C validator |