MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Visualization version   GIF version

Theorem odf1o2 18674
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
2 elfzoelz 13020 . . . . . . . 8 (𝑥 ∈ (0..^(𝑂𝐴)) → 𝑥 ∈ ℤ)
32adantl 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝑥 ∈ ℤ)
4 simpl2 1188 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
5 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
6 odf1o1.t . . . . . . . 8 · = (.g𝐺)
75, 6mulgcl 18221 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
81, 3, 4, 7syl3anc 1367 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → (𝑥 · 𝐴) ∈ 𝑋)
98ex 415 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) → (𝑥 · 𝐴) ∈ 𝑋))
10 simpl3 1189 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℕ)
1110nncnd 11630 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℂ)
1211subid1d 10962 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) − 0) = (𝑂𝐴))
1312breq1d 5050 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
14 fzocongeq 15652 . . . . . . . 8 ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
1514adantl 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
16 simpl1 1187 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐺 ∈ Grp)
17 simpl2 1188 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐴𝑋)
182ad2antrl 726 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑥 ∈ ℤ)
19 elfzoelz 13020 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2019ad2antll 727 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑦 ∈ ℤ)
21 odf1o1.o . . . . . . . . 9 𝑂 = (od‘𝐺)
22 eqid 2820 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
235, 21, 6, 22odcong 18653 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2416, 17, 18, 20, 23syl112anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2513, 15, 243bitr3rd 312 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
2625ex 415 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
279, 26dom2lem 8525 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋)
28 f1fn 6550 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
2927, 28syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
30 resss 5852 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) ⊆ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
312ssriv 3947 . . . . . . . 8 (0..^(𝑂𝐴)) ⊆ ℤ
32 resmpt 5879 . . . . . . . 8 ((0..^(𝑂𝐴)) ⊆ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
3331, 32ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
34 oveq1 7138 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
3534cbvmptv 5143 . . . . . . 7 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
3630, 33, 353sstr3i 3985 . . . . . 6 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
37 rnss 5783 . . . . . 6 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
3836, 37mp1i 13 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
39 simpr 487 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
40 simpl3 1189 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∈ ℕ)
41 zmodfzo 13244 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
4239, 40, 41syl2anc 586 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
435, 21, 6, 22odmod 18650 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
44433an1rs 1355 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
4544eqcomd 2826 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
46 oveq1 7138 . . . . . . . . . 10 (𝑥 = (𝑦 mod (𝑂𝐴)) → (𝑥 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
4746rspceeqv 3617 . . . . . . . . 9 (((𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)) ∧ (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴)) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
4842, 45, 47syl2anc 586 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
49 ovex 7164 . . . . . . . . 9 (𝑦 · 𝐴) ∈ V
50 eqid 2820 . . . . . . . . . 10 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
5150elrnmpt 5802 . . . . . . . . 9 ((𝑦 · 𝐴) ∈ V → ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)))
5249, 51ax-mp 5 . . . . . . . 8 ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
5348, 52sylibr 236 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5453fmpttd 6853 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5554frnd 6495 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5638, 55eqssd 3960 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
57 eqid 2820 . . . . . 6 (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
58 odf1o1.k . . . . . 6 𝐾 = (mrCls‘(SubGrp‘𝐺))
595, 6, 57, 58cycsubg2 18329 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
60593adant3 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
6156, 60eqtr4d 2858 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
62 df-fo 6335 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)) ∧ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
6329, 61, 62sylanbrc 585 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}))
64 df-f1 6334 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))⟶𝑋 ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6564simprbi 499 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
6627, 65syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
67 dff1o3 6595 . 2 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6863, 66, 67sylanbrc 585 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3126  Vcvv 3473  wss 3912  {csn 4541   class class class wbr 5040  cmpt 5120  ccnv 5528  ran crn 5530  cres 5531  Fun wfun 6323   Fn wfn 6324  wf 6325  1-1wf1 6326  ontowfo 6327  1-1-ontowf1o 6328  cfv 6329  (class class class)co 7131  0cc0 10513  cmin 10846  cn 11614  cz 11958  ..^cfzo 13015   mod cmo 13219  cdvds 15585  Basecbs 16459  0gc0g 16689  mrClscmrc 16830  Grpcgrp 18079  .gcmg 18200  SubGrpcsubg 18249  odcod 18628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-pre-sup 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-iin 4896  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-om 7557  df-1st 7665  df-2nd 7666  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-oadd 8082  df-er 8265  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-sup 8882  df-inf 8883  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-div 11274  df-nn 11615  df-2 11677  df-3 11678  df-n0 11875  df-z 11959  df-uz 12221  df-rp 12367  df-fz 12875  df-fzo 13016  df-fl 13144  df-mod 13220  df-seq 13352  df-exp 13413  df-cj 14436  df-re 14437  df-im 14438  df-sqrt 14572  df-abs 14573  df-dvds 15586  df-ndx 16462  df-slot 16463  df-base 16465  df-sets 16466  df-ress 16467  df-plusg 16554  df-0g 16691  df-mre 16833  df-mrc 16834  df-acs 16836  df-mgm 17828  df-sgrp 17877  df-mnd 17888  df-submnd 17933  df-grp 18082  df-minusg 18083  df-sbg 18084  df-mulg 18201  df-subg 18252  df-od 18632
This theorem is referenced by:  odhash2  18676  odngen  18678
  Copyright terms: Public domain W3C validator