MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Visualization version   GIF version

Theorem odf1o2 19483
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
2 elfzoelz 13556 . . . . . . . 8 (𝑥 ∈ (0..^(𝑂𝐴)) → 𝑥 ∈ ℤ)
32adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝑥 ∈ ℤ)
4 simpl2 1193 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
5 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
6 odf1o1.t . . . . . . . 8 · = (.g𝐺)
75, 6mulgcl 19001 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
81, 3, 4, 7syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → (𝑥 · 𝐴) ∈ 𝑋)
98ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) → (𝑥 · 𝐴) ∈ 𝑋))
10 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℕ)
1110nncnd 12138 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℂ)
1211subid1d 11458 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) − 0) = (𝑂𝐴))
1312breq1d 5101 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
14 fzocongeq 16232 . . . . . . . 8 ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
1514adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
16 simpl1 1192 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐺 ∈ Grp)
17 simpl2 1193 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐴𝑋)
182ad2antrl 728 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑥 ∈ ℤ)
19 elfzoelz 13556 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2019ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑦 ∈ ℤ)
21 odf1o1.o . . . . . . . . 9 𝑂 = (od‘𝐺)
22 eqid 2731 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
235, 21, 6, 22odcong 19459 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2416, 17, 18, 20, 23syl112anc 1376 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2513, 15, 243bitr3rd 310 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
2625ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
279, 26dom2lem 8914 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋)
28 f1fn 6720 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
2927, 28syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
30 resss 5950 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) ⊆ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
312ssriv 3938 . . . . . . . 8 (0..^(𝑂𝐴)) ⊆ ℤ
32 resmpt 5986 . . . . . . . 8 ((0..^(𝑂𝐴)) ⊆ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
3331, 32ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
34 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
3534cbvmptv 5195 . . . . . . 7 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
3630, 33, 353sstr3i 3985 . . . . . 6 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
37 rnss 5879 . . . . . 6 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
3836, 37mp1i 13 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
39 simpr 484 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
40 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∈ ℕ)
41 zmodfzo 13795 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
4239, 40, 41syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
435, 21, 6, 22odmod 19456 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
44433an1rs 1360 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
4544eqcomd 2737 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
46 oveq1 7353 . . . . . . . . . 10 (𝑥 = (𝑦 mod (𝑂𝐴)) → (𝑥 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
4746rspceeqv 3600 . . . . . . . . 9 (((𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)) ∧ (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴)) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
4842, 45, 47syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
49 ovex 7379 . . . . . . . . 9 (𝑦 · 𝐴) ∈ V
50 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
5150elrnmpt 5898 . . . . . . . . 9 ((𝑦 · 𝐴) ∈ V → ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)))
5249, 51ax-mp 5 . . . . . . . 8 ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
5348, 52sylibr 234 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5453fmpttd 7048 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5554frnd 6659 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5638, 55eqssd 3952 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
57 eqid 2731 . . . . . 6 (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
58 odf1o1.k . . . . . 6 𝐾 = (mrCls‘(SubGrp‘𝐺))
595, 6, 57, 58cycsubg2 19120 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
60593adant3 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
6156, 60eqtr4d 2769 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
62 df-fo 6487 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)) ∧ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
6329, 61, 62sylanbrc 583 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}))
64 df-f1 6486 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))⟶𝑋 ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6564simprbi 496 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
6627, 65syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
67 dff1o3 6769 . 2 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6863, 66, 67sylanbrc 583 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3902  {csn 4576   class class class wbr 5091  cmpt 5172  ccnv 5615  ran crn 5617  cres 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11003  cmin 11341  cn 12122  cz 12465  ..^cfzo 13551   mod cmo 13770  cdvds 16160  Basecbs 17117  0gc0g 17340  mrClscmrc 17482  Grpcgrp 18843  .gcmg 18977  SubGrpcsubg 19030  odcod 19434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-od 19438
This theorem is referenced by:  odhash2  19485  odngen  19487
  Copyright terms: Public domain W3C validator