MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Visualization version   GIF version

Theorem odf1o2 19571
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
2 elfzoelz 13686 . . . . . . . 8 (𝑥 ∈ (0..^(𝑂𝐴)) → 𝑥 ∈ ℤ)
32adantl 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝑥 ∈ ℤ)
4 simpl2 1189 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
5 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
6 odf1o1.t . . . . . . . 8 · = (.g𝐺)
75, 6mulgcl 19085 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
81, 3, 4, 7syl3anc 1368 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → (𝑥 · 𝐴) ∈ 𝑋)
98ex 411 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) → (𝑥 · 𝐴) ∈ 𝑋))
10 simpl3 1190 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℕ)
1110nncnd 12280 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℂ)
1211subid1d 11610 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) − 0) = (𝑂𝐴))
1312breq1d 5163 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
14 fzocongeq 16326 . . . . . . . 8 ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
1514adantl 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
16 simpl1 1188 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐺 ∈ Grp)
17 simpl2 1189 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐴𝑋)
182ad2antrl 726 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑥 ∈ ℤ)
19 elfzoelz 13686 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2019ad2antll 727 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑦 ∈ ℤ)
21 odf1o1.o . . . . . . . . 9 𝑂 = (od‘𝐺)
22 eqid 2726 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
235, 21, 6, 22odcong 19547 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2416, 17, 18, 20, 23syl112anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2513, 15, 243bitr3rd 309 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
2625ex 411 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
279, 26dom2lem 9023 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋)
28 f1fn 6799 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
2927, 28syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
30 resss 6011 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) ⊆ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
312ssriv 3983 . . . . . . . 8 (0..^(𝑂𝐴)) ⊆ ℤ
32 resmpt 6046 . . . . . . . 8 ((0..^(𝑂𝐴)) ⊆ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
3331, 32ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
34 oveq1 7431 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
3534cbvmptv 5266 . . . . . . 7 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
3630, 33, 353sstr3i 4022 . . . . . 6 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
37 rnss 5945 . . . . . 6 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
3836, 37mp1i 13 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
39 simpr 483 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
40 simpl3 1190 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∈ ℕ)
41 zmodfzo 13914 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
4239, 40, 41syl2anc 582 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
435, 21, 6, 22odmod 19544 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
44433an1rs 1356 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
4544eqcomd 2732 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
46 oveq1 7431 . . . . . . . . . 10 (𝑥 = (𝑦 mod (𝑂𝐴)) → (𝑥 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
4746rspceeqv 3630 . . . . . . . . 9 (((𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)) ∧ (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴)) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
4842, 45, 47syl2anc 582 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
49 ovex 7457 . . . . . . . . 9 (𝑦 · 𝐴) ∈ V
50 eqid 2726 . . . . . . . . . 10 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
5150elrnmpt 5962 . . . . . . . . 9 ((𝑦 · 𝐴) ∈ V → ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)))
5249, 51ax-mp 5 . . . . . . . 8 ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
5348, 52sylibr 233 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5453fmpttd 7129 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5554frnd 6736 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5638, 55eqssd 3997 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
57 eqid 2726 . . . . . 6 (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
58 odf1o1.k . . . . . 6 𝐾 = (mrCls‘(SubGrp‘𝐺))
595, 6, 57, 58cycsubg2 19204 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
60593adant3 1129 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
6156, 60eqtr4d 2769 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
62 df-fo 6560 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)) ∧ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
6329, 61, 62sylanbrc 581 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}))
64 df-f1 6559 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))⟶𝑋 ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6564simprbi 495 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
6627, 65syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
67 dff1o3 6849 . 2 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6863, 66, 67sylanbrc 581 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  Vcvv 3462  wss 3947  {csn 4633   class class class wbr 5153  cmpt 5236  ccnv 5681  ran crn 5683  cres 5684  Fun wfun 6548   Fn wfn 6549  wf 6550  1-1wf1 6551  ontowfo 6552  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  0cc0 11158  cmin 11494  cn 12264  cz 12610  ..^cfzo 13681   mod cmo 13889  cdvds 16256  Basecbs 17213  0gc0g 17454  mrClscmrc 17596  Grpcgrp 18928  .gcmg 19061  SubGrpcsubg 19114  odcod 19522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-0g 17456  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-od 19526
This theorem is referenced by:  odhash2  19573  odngen  19575
  Copyright terms: Public domain W3C validator