MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o2 Structured version   Visualization version   GIF version

Theorem odf1o2 19487
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
2 elfzoelz 13561 . . . . . . . 8 (𝑥 ∈ (0..^(𝑂𝐴)) → 𝑥 ∈ ℤ)
32adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝑥 ∈ ℤ)
4 simpl2 1193 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
5 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
6 odf1o1.t . . . . . . . 8 · = (.g𝐺)
75, 6mulgcl 19006 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
81, 3, 4, 7syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂𝐴))) → (𝑥 · 𝐴) ∈ 𝑋)
98ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) → (𝑥 · 𝐴) ∈ 𝑋))
10 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℕ)
1110nncnd 12148 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (𝑂𝐴) ∈ ℂ)
1211subid1d 11468 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) − 0) = (𝑂𝐴))
1312breq1d 5103 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
14 fzocongeq 16237 . . . . . . . 8 ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
1514adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → (((𝑂𝐴) − 0) ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
16 simpl1 1192 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐺 ∈ Grp)
17 simpl2 1193 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝐴𝑋)
182ad2antrl 728 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑥 ∈ ℤ)
19 elfzoelz 13561 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2019ad2antll 729 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → 𝑦 ∈ ℤ)
21 odf1o1.o . . . . . . . . 9 𝑂 = (od‘𝐺)
22 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
235, 21, 6, 22odcong 19463 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2416, 17, 18, 20, 23syl112anc 1376 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2513, 15, 243bitr3rd 310 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴)))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
2625ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ((𝑥 ∈ (0..^(𝑂𝐴)) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
279, 26dom2lem 8921 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋)
28 f1fn 6725 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
2927, 28syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)))
30 resss 5954 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) ⊆ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
312ssriv 3934 . . . . . . . 8 (0..^(𝑂𝐴)) ⊆ ℤ
32 resmpt 5990 . . . . . . . 8 ((0..^(𝑂𝐴)) ⊆ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
3331, 32ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂𝐴))) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
34 oveq1 7359 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
3534cbvmptv 5197 . . . . . . 7 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
3630, 33, 353sstr3i 3981 . . . . . 6 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
37 rnss 5883 . . . . . 6 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
3836, 37mp1i 13 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
39 simpr 484 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
40 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑂𝐴) ∈ ℕ)
41 zmodfzo 13800 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
4239, 40, 41syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)))
435, 21, 6, 22odmod 19460 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
44433an1rs 1360 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ((𝑦 mod (𝑂𝐴)) · 𝐴) = (𝑦 · 𝐴))
4544eqcomd 2739 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
46 oveq1 7359 . . . . . . . . . 10 (𝑥 = (𝑦 mod (𝑂𝐴)) → (𝑥 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴))
4746rspceeqv 3596 . . . . . . . . 9 (((𝑦 mod (𝑂𝐴)) ∈ (0..^(𝑂𝐴)) ∧ (𝑦 · 𝐴) = ((𝑦 mod (𝑂𝐴)) · 𝐴)) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
4842, 45, 47syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
49 ovex 7385 . . . . . . . . 9 (𝑦 · 𝐴) ∈ V
50 eqid 2733 . . . . . . . . . 10 (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))
5150elrnmpt 5902 . . . . . . . . 9 ((𝑦 · 𝐴) ∈ V → ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)))
5249, 51ax-mp 5 . . . . . . . 8 ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))
5348, 52sylibr 234 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5453fmpttd 7054 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5554frnd 6664 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
5638, 55eqssd 3948 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
57 eqid 2733 . . . . . 6 (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))
58 odf1o1.k . . . . . 6 𝐾 = (mrCls‘(SubGrp‘𝐺))
595, 6, 57, 58cycsubg2 19124 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
60593adant3 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)))
6156, 60eqtr4d 2771 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
62 df-fo 6492 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂𝐴)) ∧ ran (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
6329, 61, 62sylanbrc 583 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}))
64 df-f1 6491 . . . 4 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))⟶𝑋 ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6564simprbi 496 . . 3 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1𝑋 → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
6627, 65syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)))
67 dff1o3 6774 . 2 ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–onto→(𝐾‘{𝐴}) ∧ Fun (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴))))
6863, 66, 67sylanbrc 583 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  wss 3898  {csn 4575   class class class wbr 5093  cmpt 5174  ccnv 5618  ran crn 5620  cres 5621  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  0cc0 11013  cmin 11351  cn 12132  cz 12475  ..^cfzo 13556   mod cmo 13775  cdvds 16165  Basecbs 17122  0gc0g 17345  mrClscmrc 17487  Grpcgrp 18848  .gcmg 18982  SubGrpcsubg 19035  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-od 19442
This theorem is referenced by:  odhash2  19489  odngen  19491
  Copyright terms: Public domain W3C validator