Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂‘𝐴))) → 𝐺 ∈ Grp) |
2 | | elfzoelz 13387 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^(𝑂‘𝐴)) → 𝑥 ∈ ℤ) |
3 | 2 | adantl 482 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂‘𝐴))) → 𝑥 ∈ ℤ) |
4 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂‘𝐴))) → 𝐴 ∈ 𝑋) |
5 | | odf1o1.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
6 | | odf1o1.t |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
7 | 5, 6 | mulgcl 18721 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
8 | 1, 3, 4, 7 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ (0..^(𝑂‘𝐴))) → (𝑥 · 𝐴) ∈ 𝑋) |
9 | 8 | ex 413 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂‘𝐴)) → (𝑥 · 𝐴) ∈ 𝑋)) |
10 | | simpl3 1192 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → (𝑂‘𝐴) ∈ ℕ) |
11 | 10 | nncnd 11989 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → (𝑂‘𝐴) ∈ ℂ) |
12 | 11 | subid1d 11321 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → ((𝑂‘𝐴) − 0) = (𝑂‘𝐴)) |
13 | 12 | breq1d 5084 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → (((𝑂‘𝐴) − 0) ∥ (𝑥 − 𝑦) ↔ (𝑂‘𝐴) ∥ (𝑥 − 𝑦))) |
14 | | fzocongeq 16033 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → (((𝑂‘𝐴) − 0) ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) |
15 | 14 | adantl 482 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → (((𝑂‘𝐴) − 0) ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) |
16 | | simpl1 1190 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → 𝐺 ∈ Grp) |
17 | | simpl2 1191 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → 𝐴 ∈ 𝑋) |
18 | 2 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → 𝑥 ∈ ℤ) |
19 | | elfzoelz 13387 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0..^(𝑂‘𝐴)) → 𝑦 ∈ ℤ) |
20 | 19 | ad2antll 726 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → 𝑦 ∈ ℤ) |
21 | | odf1o1.o |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
22 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
23 | 5, 21, 6, 22 | odcong 19157 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
24 | 16, 17, 18, 20, 23 | syl112anc 1373 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
25 | 13, 15, 24 | 3bitr3rd 310 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ (𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴)))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)) |
26 | 25 | ex 413 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑥 ∈ (0..^(𝑂‘𝐴)) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))) |
27 | 9, 26 | dom2lem 8780 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1→𝑋) |
28 | | f1fn 6671 |
. . . 4
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1→𝑋 → (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂‘𝐴))) |
29 | 27, 28 | syl 17 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂‘𝐴))) |
30 | | resss 5916 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂‘𝐴))) ⊆ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
31 | 2 | ssriv 3925 |
. . . . . . . 8
⊢
(0..^(𝑂‘𝐴)) ⊆
ℤ |
32 | | resmpt 5945 |
. . . . . . . 8
⊢
((0..^(𝑂‘𝐴)) ⊆ ℤ →
((𝑥 ∈ ℤ ↦
(𝑥 · 𝐴)) ↾ (0..^(𝑂‘𝐴))) = (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴))) |
33 | 31, 32 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↾ (0..^(𝑂‘𝐴))) = (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) |
34 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴)) |
35 | 34 | cbvmptv 5187 |
. . . . . . 7
⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) |
36 | 30, 33, 35 | 3sstr3i 3963 |
. . . . . 6
⊢ (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) |
37 | | rnss 5848 |
. . . . . 6
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) ⊆ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) → ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))) |
38 | 36, 37 | mp1i 13 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) ⊆ ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))) |
39 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) |
40 | | simpl3 1192 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑂‘𝐴) ∈ ℕ) |
41 | | zmodfzo 13614 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑦 mod (𝑂‘𝐴)) ∈ (0..^(𝑂‘𝐴))) |
42 | 39, 40, 41 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 mod (𝑂‘𝐴)) ∈ (0..^(𝑂‘𝐴))) |
43 | 5, 21, 6, 22 | odmod 19154 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑦 mod (𝑂‘𝐴)) · 𝐴) = (𝑦 · 𝐴)) |
44 | 43 | 3an1rs 1358 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ((𝑦 mod (𝑂‘𝐴)) · 𝐴) = (𝑦 · 𝐴)) |
45 | 44 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) = ((𝑦 mod (𝑂‘𝐴)) · 𝐴)) |
46 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 mod (𝑂‘𝐴)) → (𝑥 · 𝐴) = ((𝑦 mod (𝑂‘𝐴)) · 𝐴)) |
47 | 46 | rspceeqv 3575 |
. . . . . . . . 9
⊢ (((𝑦 mod (𝑂‘𝐴)) ∈ (0..^(𝑂‘𝐴)) ∧ (𝑦 · 𝐴) = ((𝑦 mod (𝑂‘𝐴)) · 𝐴)) → ∃𝑥 ∈ (0..^(𝑂‘𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)) |
48 | 42, 45, 47 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → ∃𝑥 ∈ (0..^(𝑂‘𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)) |
49 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑦 · 𝐴) ∈ V |
50 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) = (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) |
51 | 50 | elrnmpt 5865 |
. . . . . . . . 9
⊢ ((𝑦 · 𝐴) ∈ V → ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂‘𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴))) |
52 | 49, 51 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ (0..^(𝑂‘𝐴))(𝑦 · 𝐴) = (𝑥 · 𝐴)) |
53 | 48, 52 | sylibr 233 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ ℤ) → (𝑦 · 𝐴) ∈ ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴))) |
54 | 53 | fmpttd 6989 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)):ℤ⟶ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴))) |
55 | 54 | frnd 6608 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) ⊆ ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴))) |
56 | 38, 55 | eqssd 3938 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))) |
57 | | eqid 2738 |
. . . . . 6
⊢ (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) = (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴)) |
58 | | odf1o1.k |
. . . . . 6
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
59 | 5, 6, 57, 58 | cycsubg2 18829 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))) |
60 | 59 | 3adant3 1131 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝐾‘{𝐴}) = ran (𝑦 ∈ ℤ ↦ (𝑦 · 𝐴))) |
61 | 56, 60 | eqtr4d 2781 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})) |
62 | | df-fo 6439 |
. . 3
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) Fn (0..^(𝑂‘𝐴)) ∧ ran (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))) |
63 | 29, 61, 62 | sylanbrc 583 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–onto→(𝐾‘{𝐴})) |
64 | | df-f1 6438 |
. . . 4
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1→𝑋 ↔ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))⟶𝑋 ∧ Fun ◡(𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)))) |
65 | 64 | simprbi 497 |
. . 3
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1→𝑋 → Fun ◡(𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴))) |
66 | 27, 65 | syl 17 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → Fun ◡(𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴))) |
67 | | dff1o3 6722 |
. 2
⊢ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–onto→(𝐾‘{𝐴}) ∧ Fun ◡(𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)))) |
68 | 63, 66, 67 | sylanbrc 583 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑥 · 𝐴)):(0..^(𝑂‘𝐴))–1-1-onto→(𝐾‘{𝐴})) |