MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextcn Structured version   Visualization version   GIF version

Theorem cnextcn 22820
Description: Extension by continuity. Theorem 1 of [BourbakiTop1] p. I.57. Given a topology 𝐽 on 𝐶, a subset 𝐴 dense in 𝐶, this states a condition for 𝐹 from 𝐴 to a regular space 𝐾 to be extensible by continuity. (Contributed by Thierry Arnoux, 1-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
cnextcn.8 (𝜑𝐾 ∈ Reg)
Assertion
Ref Expression
cnextcn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextcn
Dummy variables 𝑦 𝑏 𝑑 𝑢 𝑣 𝑧 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . . 5 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → 𝜑)
2 simpll 767 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ (𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥}) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)) → 𝜑)
3 simpr3 1197 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ (𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥}) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)) → ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)
4 cnextf.3 . . . . . . . . . . 11 (𝜑𝐽 ∈ Top)
54ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ (𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥}) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)) → 𝐽 ∈ Top)
6 simpr2 1196 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ (𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥}) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)) → 𝑑 ∈ ((nei‘𝐽)‘{𝑥}))
7 neii2 21861 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑣𝐽 ({𝑥} ⊆ 𝑣𝑣𝑑))
85, 6, 7syl2anc 587 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ (𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥}) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)) → ∃𝑣𝐽 ({𝑥} ⊆ 𝑣𝑣𝑑))
9 vex 3402 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
109snss 4674 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑣 ↔ {𝑥} ⊆ 𝑣)
1110biimpri 231 . . . . . . . . . . . . . . . . . 18 ({𝑥} ⊆ 𝑣𝑥𝑣)
1211anim1i 618 . . . . . . . . . . . . . . . . 17 (({𝑥} ⊆ 𝑣𝑣𝑑) → (𝑥𝑣𝑣𝑑))
1312anim2i 620 . . . . . . . . . . . . . . . 16 ((𝑣𝐽 ∧ ({𝑥} ⊆ 𝑣𝑣𝑑)) → (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑)))
1413anim2i 620 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣𝐽 ∧ ({𝑥} ⊆ 𝑣𝑣𝑑))) → (𝜑 ∧ (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑))))
1514ex 416 . . . . . . . . . . . . . 14 (𝜑 → ((𝑣𝐽 ∧ ({𝑥} ⊆ 𝑣𝑣𝑑)) → (𝜑 ∧ (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑)))))
16 3anass 1096 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐽𝑥𝑣) ↔ (𝜑 ∧ (𝑣𝐽𝑥𝑣)))
1716anbi1i 627 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑) ↔ ((𝜑 ∧ (𝑣𝐽𝑥𝑣)) ∧ 𝑣𝑑))
18 anass 472 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑣𝐽𝑥𝑣)) ∧ 𝑣𝑑) ↔ (𝜑 ∧ ((𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑)))
19 anass 472 . . . . . . . . . . . . . . . . 17 (((𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑) ↔ (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑)))
2019anbi2i 626 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑)) ↔ (𝜑 ∧ (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑))))
2117, 18, 203bitri 300 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑) ↔ (𝜑 ∧ (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑))))
22 opnneip 21872 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑣𝐽𝑥𝑣) → 𝑣 ∈ ((nei‘𝐽)‘{𝑥}))
234, 22syl3an1 1164 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐽𝑥𝑣) → 𝑣 ∈ ((nei‘𝐽)‘{𝑥}))
2423adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑) → 𝑣 ∈ ((nei‘𝐽)‘{𝑥}))
25 simpr2 1196 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑑 ∧ (𝜑𝑣𝐽𝑥𝑣)) → 𝑣𝐽)
2625ex 416 . . . . . . . . . . . . . . . . 17 (𝑣𝑑 → ((𝜑𝑣𝐽𝑥𝑣) → 𝑣𝐽))
2726imdistanri 573 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑) → (𝑣𝐽𝑣𝑑))
2824, 27jca 515 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝐽𝑥𝑣) ∧ 𝑣𝑑) → (𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽𝑣𝑑)))
2921, 28sylbir 238 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐽 ∧ (𝑥𝑣𝑣𝑑))) → (𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽𝑣𝑑)))
3015, 29syl6 35 . . . . . . . . . . . . 13 (𝜑 → ((𝑣𝐽 ∧ ({𝑥} ⊆ 𝑣𝑣𝑑)) → (𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽𝑣𝑑))))
3130adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ((𝑣𝐽 ∧ ({𝑥} ⊆ 𝑣𝑣𝑑)) → (𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽𝑣𝑑))))
32 cnextf.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Haus)
33 haustop 22084 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Haus → 𝐾 ∈ Top)
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ Top)
35 imassrn 5914 . . . . . . . . . . . . . . . . . . 19 (𝐹 “ (𝑑𝐴)) ⊆ ran 𝐹
36 cnextf.5 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝐴𝐵)
3736frnd 6512 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝐹𝐵)
3835, 37sstrid 3888 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 “ (𝑑𝐴)) ⊆ 𝐵)
39 ssrin 4124 . . . . . . . . . . . . . . . . . . 19 (𝑣𝑑 → (𝑣𝐴) ⊆ (𝑑𝐴))
40 imass2 5939 . . . . . . . . . . . . . . . . . . 19 ((𝑣𝐴) ⊆ (𝑑𝐴) → (𝐹 “ (𝑣𝐴)) ⊆ (𝐹 “ (𝑑𝐴)))
4139, 40syl 17 . . . . . . . . . . . . . . . . . 18 (𝑣𝑑 → (𝐹 “ (𝑣𝐴)) ⊆ (𝐹 “ (𝑑𝐴)))
42 cnextf.2 . . . . . . . . . . . . . . . . . . 19 𝐵 = 𝐾
4342clsss 21807 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Top ∧ (𝐹 “ (𝑑𝐴)) ⊆ 𝐵 ∧ (𝐹 “ (𝑣𝐴)) ⊆ (𝐹 “ (𝑑𝐴))) → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))))
4434, 38, 41, 43syl2an3an 1423 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝑑) → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))))
45 sstr 3885 . . . . . . . . . . . . . . . . 17 ((((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤)
4644, 45sylan 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑑) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤)
4746an32s 652 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) ∧ 𝑣𝑑) → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤)
4847ex 416 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → (𝑣𝑑 → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))
4948anim2d 615 . . . . . . . . . . . . 13 ((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ((𝑣𝐽𝑣𝑑) → (𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤)))
5049anim2d 615 . . . . . . . . . . . 12 ((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ((𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽𝑣𝑑)) → (𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))))
5131, 50syld 47 . . . . . . . . . . 11 ((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ((𝑣𝐽 ∧ ({𝑥} ⊆ 𝑣𝑣𝑑)) → (𝑣 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))))
5251reximdv2 3181 . . . . . . . . . 10 ((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → (∃𝑣𝐽 ({𝑥} ⊆ 𝑣𝑣𝑑) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤)))
5352imp 410 . . . . . . . . 9 (((𝜑 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) ∧ ∃𝑣𝐽 ({𝑥} ⊆ 𝑣𝑣𝑑)) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))
542, 3, 8, 53syl21anc 837 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ (𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥}) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))
55543anassrs 1361 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑑 ∈ ((nei‘𝐽)‘{𝑥})) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))
56 simpr 488 . . . . . . . . 9 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤) → ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤)
57 simp-4l 783 . . . . . . . . 9 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤) → 𝜑)
58 simplr 769 . . . . . . . . 9 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤) → 𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
59 imaeq2 5899 . . . . . . . . . . . . . 14 (𝑢 = (𝑑𝐴) → (𝐹𝑢) = (𝐹 “ (𝑑𝐴)))
6059fveq2d 6680 . . . . . . . . . . . . 13 (𝑢 = (𝑑𝐴) → ((cls‘𝐾)‘(𝐹𝑢)) = ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))))
6160sseq1d 3908 . . . . . . . . . . . 12 (𝑢 = (𝑑𝐴) → (((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤 ↔ ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤))
6261biimpcd 252 . . . . . . . . . . 11 (((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤 → (𝑢 = (𝑑𝐴) → ((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤))
6362reximdv 3183 . . . . . . . . . 10 (((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤 → (∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})𝑢 = (𝑑𝐴) → ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤))
64 fvexd 6691 . . . . . . . . . . . 12 (𝜑 → ((nei‘𝐽)‘{𝑥}) ∈ V)
65 cnextf.1 . . . . . . . . . . . . . . . 16 𝐶 = 𝐽
6665toptopon 21670 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
674, 66sylib 221 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ (TopOn‘𝐶))
6867elfvexd 6710 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ V)
69 cnextf.a . . . . . . . . . . . . 13 (𝜑𝐴𝐶)
7068, 69ssexd 5192 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
71 elrest 16806 . . . . . . . . . . . 12 ((((nei‘𝐽)‘{𝑥}) ∈ V ∧ 𝐴 ∈ V) → (𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↔ ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})𝑢 = (𝑑𝐴)))
7264, 70, 71syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↔ ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})𝑢 = (𝑑𝐴)))
7372biimpa 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) → ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})𝑢 = (𝑑𝐴))
7463, 73impel 509 . . . . . . . . 9 ((((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤 ∧ (𝜑𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))) → ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)
7556, 57, 58, 74syl12anc 836 . . . . . . . 8 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤) → ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)
76 cnextf.6 . . . . . . . . . . . . . . . 16 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
77 eleq1w 2815 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
7877anbi2d 632 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝜑𝑥𝐶) ↔ (𝜑𝑦𝐶)))
79 sneq 4526 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → {𝑥} = {𝑦})
8079fveq2d 6680 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑦}))
8180oveq1d 7187 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))
8281oveq2d 7188 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴)))
8382fveq1d 6678 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹))
8483neeq1d 2993 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅))
8578, 84imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)))
86 cnextf.7 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
8785, 86chvarvv 2010 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑦}) ↾t 𝐴))‘𝐹) ≠ ∅)
8865, 42, 4, 32, 36, 69, 76, 87cnextfvval 22818 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑥) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
89 fvex 6689 . . . . . . . . . . . . . . . . . 18 ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ V
9089uniex 7487 . . . . . . . . . . . . . . . . 17 ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ V
9190snid 4552 . . . . . . . . . . . . . . . 16 ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ { ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)}
9232adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → 𝐾 ∈ Haus)
9376eleq2d 2818 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
9493biimpar 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
9567adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
9669adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → 𝐴𝐶)
97 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐶) → 𝑥𝐶)
98 trnei 22645 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
9995, 96, 97, 98syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
10094, 99mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
10136adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
10242hausflf2 22751 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)
10392, 100, 101, 86, 102syl31anc 1374 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o)
104 en1b 8626 . . . . . . . . . . . . . . . . 17 (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)})
105103, 104sylib 221 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)})
10691, 105eleqtrrid 2840 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
10788, 106eqeltrd 2833 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
10842toptopon 21670 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
10934, 108sylib 221 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝐵))
110109adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐶) → 𝐾 ∈ (TopOn‘𝐵))
111 flfnei 22744 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝐵 ∧ ∀𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏)))
112110, 100, 101, 111syl3anc 1372 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐶) → ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ↔ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝐵 ∧ ∀𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏)))
113107, 112mpbid 235 . . . . . . . . . . . . 13 ((𝜑𝑥𝐶) → ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝐵 ∧ ∀𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏))
114113simprd 499 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → ∀𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏)
115114r19.21bi 3121 . . . . . . . . . . 11 (((𝜑𝑥𝐶) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏)
116115ad4ant13 751 . . . . . . . . . 10 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏)
11734ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥𝐶) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → 𝐾 ∈ Top)
118 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐶) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}))
11942neii1 21859 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → 𝑏𝐵)
120117, 118, 119syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑥𝐶) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → 𝑏𝐵)
121 simpr 488 . . . . . . . . . . . 12 ((((𝜑𝑥𝐶) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ((cls‘𝐾)‘𝑏) ⊆ 𝑤)
12242clsss 21807 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ 𝑏𝐵 ∧ (𝐹𝑢) ⊆ 𝑏) → ((cls‘𝐾)‘(𝐹𝑢)) ⊆ ((cls‘𝐾)‘𝑏))
123 sstr 3885 . . . . . . . . . . . . . . . 16 ((((cls‘𝐾)‘(𝐹𝑢)) ⊆ ((cls‘𝐾)‘𝑏) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤)
124122, 123sylan 583 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Top ∧ 𝑏𝐵 ∧ (𝐹𝑢) ⊆ 𝑏) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤)
1251243an1rs 1360 . . . . . . . . . . . . . 14 (((𝐾 ∈ Top ∧ 𝑏𝐵 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) ∧ (𝐹𝑢) ⊆ 𝑏) → ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤)
126125ex 416 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑏𝐵 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ((𝐹𝑢) ⊆ 𝑏 → ((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤))
127126reximdv 3183 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑏𝐵 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏 → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤))
128117, 120, 121, 127syl3anc 1372 . . . . . . . . . . 11 ((((𝜑𝑥𝐶) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏 → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤))
129128adantllr 719 . . . . . . . . . 10 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → (∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)(𝐹𝑢) ⊆ 𝑏 → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤))
130116, 129mpd 15 . . . . . . . . 9 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤)
13134ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → 𝐾 ∈ Top)
132 cnextcn.8 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Reg)
133132ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → 𝐾 ∈ Reg)
134133ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑐𝐾) ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤)) → 𝐾 ∈ Reg)
135 simplr 769 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑐𝐾) ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤)) → 𝑐𝐾)
136 simprl 771 . . . . . . . . . . . . 13 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑐𝐾) ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤)) → (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐)
137 regsep 22087 . . . . . . . . . . . . 13 ((𝐾 ∈ Reg ∧ 𝑐𝐾 ∧ (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐) → ∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑐))
138134, 135, 136, 137syl3anc 1372 . . . . . . . . . . . 12 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑐𝐾) ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤)) → ∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑐))
139 sstr 3885 . . . . . . . . . . . . . . . 16 ((((cls‘𝐾)‘𝑏) ⊆ 𝑐𝑐𝑤) → ((cls‘𝐾)‘𝑏) ⊆ 𝑤)
140139expcom 417 . . . . . . . . . . . . . . 15 (𝑐𝑤 → (((cls‘𝐾)‘𝑏) ⊆ 𝑐 → ((cls‘𝐾)‘𝑏) ⊆ 𝑤))
141140anim2d 615 . . . . . . . . . . . . . 14 (𝑐𝑤 → (((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑐) → ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)))
142141reximdv 3183 . . . . . . . . . . . . 13 (𝑐𝑤 → (∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑐) → ∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)))
143142ad2antll 729 . . . . . . . . . . . 12 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑐𝐾) ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤)) → (∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑐) → ∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)))
144138, 143mpd 15 . . . . . . . . . . 11 (((((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) ∧ 𝑐𝐾) ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤)) → ∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤))
145 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}))
146 neii2 21861 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑐𝐾 ({(((𝐽CnExt𝐾)‘𝐹)‘𝑥)} ⊆ 𝑐𝑐𝑤))
147 fvex 6689 . . . . . . . . . . . . . . . . 17 (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ V
148147snss 4674 . . . . . . . . . . . . . . . 16 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐 ↔ {(((𝐽CnExt𝐾)‘𝐹)‘𝑥)} ⊆ 𝑐)
149148anbi1i 627 . . . . . . . . . . . . . . 15 (((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤) ↔ ({(((𝐽CnExt𝐾)‘𝐹)‘𝑥)} ⊆ 𝑐𝑐𝑤))
150149biimpri 231 . . . . . . . . . . . . . 14 (({(((𝐽CnExt𝐾)‘𝐹)‘𝑥)} ⊆ 𝑐𝑐𝑤) → ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤))
151150reximi 3157 . . . . . . . . . . . . 13 (∃𝑐𝐾 ({(((𝐽CnExt𝐾)‘𝐹)‘𝑥)} ⊆ 𝑐𝑐𝑤) → ∃𝑐𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤))
152146, 151syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑐𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤))
153131, 145, 152syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑐𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑐𝑐𝑤))
154144, 153r19.29a 3199 . . . . . . . . . 10 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤))
155 anass 472 . . . . . . . . . . . 12 (((𝑏𝐾 ∧ (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) ↔ (𝑏𝐾 ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)))
156 opnneip 21872 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑏𝐾 ∧ (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏) → 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}))
1571563expib 1123 . . . . . . . . . . . . 13 (𝐾 ∈ Top → ((𝑏𝐾 ∧ (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏) → 𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})))
158157anim1d 614 . . . . . . . . . . . 12 (𝐾 ∈ Top → (((𝑏𝐾 ∧ (((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → (𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)))
159155, 158syl5bir 246 . . . . . . . . . . 11 (𝐾 ∈ Top → ((𝑏𝐾 ∧ ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)) → (𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)}) ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤)))
160159reximdv2 3181 . . . . . . . . . 10 (𝐾 ∈ Top → (∃𝑏𝐾 ((((𝐽CnExt𝐾)‘𝐹)‘𝑥) ∈ 𝑏 ∧ ((cls‘𝐾)‘𝑏) ⊆ 𝑤) → ∃𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})((cls‘𝐾)‘𝑏) ⊆ 𝑤))
161131, 154, 160sylc 65 . . . . . . . . 9 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑏 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})((cls‘𝐾)‘𝑏) ⊆ 𝑤)
162130, 161r19.29a 3199 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)((cls‘𝐾)‘(𝐹𝑢)) ⊆ 𝑤)
16375, 162r19.29a 3199 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑑 ∈ ((nei‘𝐽)‘{𝑥})((cls‘𝐾)‘(𝐹 “ (𝑑𝐴))) ⊆ 𝑤)
16455, 163r19.29a 3199 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤))
165 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑣𝐽) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) ∧ 𝑧𝑣) → ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤)
166 simpll 767 . . . . . . . . . . . . 13 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝜑)
1674ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝐽 ∈ Top)
168 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝑣𝐽)
16965eltopss 21660 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑣𝐽) → 𝑣𝐶)
170167, 168, 169syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝑣𝐶)
171 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝑧𝑣)
172170, 171sseldd 3878 . . . . . . . . . . . . 13 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝑧𝐶)
173 fvexd 6691 . . . . . . . . . . . . . 14 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → ((nei‘𝐽)‘{𝑧}) ∈ V)
17470ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝐴 ∈ V)
175 opnneip 21872 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑣𝐽𝑧𝑣) → 𝑣 ∈ ((nei‘𝐽)‘{𝑧}))
1764, 175syl3an1 1164 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐽𝑧𝑣) → 𝑣 ∈ ((nei‘𝐽)‘{𝑧}))
1771763expa 1119 . . . . . . . . . . . . . 14 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → 𝑣 ∈ ((nei‘𝐽)‘{𝑧}))
178 elrestr 16807 . . . . . . . . . . . . . 14 ((((nei‘𝐽)‘{𝑧}) ∈ V ∧ 𝐴 ∈ V ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑧})) → (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
179173, 174, 177, 178syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
18065, 42, 4, 32, 36, 69, 76, 86cnextfvval 22818 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐶) → (((𝐽CnExt𝐾)‘𝐹)‘𝑧) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹))
181180adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (((𝐽CnExt𝐾)‘𝐹)‘𝑧) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹))
18232adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐶) → 𝐾 ∈ Haus)
18376eleq2d 2818 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑧𝐶))
184183biimpar 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐶) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
18567adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝐶) → 𝐽 ∈ (TopOn‘𝐶))
18669adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝐶) → 𝐴𝐶)
187 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝐶) → 𝑧𝐶)
188 trnei 22645 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑧𝐶) → (𝑧 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴)))
189185, 186, 187, 188syl3anc 1372 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧𝐶) → (𝑧 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴)))
190184, 189mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐶) → (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴))
19136adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐶) → 𝐹:𝐴𝐵)
192 eleq1w 2815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (𝑥𝐶𝑧𝐶))
193192anbi2d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((𝜑𝑥𝐶) ↔ (𝜑𝑧𝐶)))
194 sneq 4526 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑧 → {𝑥} = {𝑧})
195194fveq2d 6680 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝑧}))
196195oveq1d 7187 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) = (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
197196oveq2d 7188 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)))
198197fveq1d 6678 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹))
199198neeq1d 2993 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≠ ∅))
200193, 199imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) ↔ ((𝜑𝑧𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≠ ∅)))
201200, 86chvarvv 2010 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≠ ∅)
20242hausflf2 22751 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≠ ∅) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≈ 1o)
203182, 190, 191, 201, 202syl31anc 1374 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≈ 1o)
204 en1b 8626 . . . . . . . . . . . . . . . . . 18 (((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ≈ 1o ↔ ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹)})
205203, 204sylib 221 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹)})
206205adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) = { ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹)})
207109adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧𝐶) → 𝐾 ∈ (TopOn‘𝐵))
208 flfval 22743 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))))
209207, 190, 191, 208syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))))
210209adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) = (𝐾 fLim ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))))
21132uniexd 7488 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 𝐾 ∈ V)
212211ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → 𝐾 ∈ V)
21342, 212eqeltrid 2837 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → 𝐵 ∈ V)
214190adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴))
215 filfbas 22601 . . . . . . . . . . . . . . . . . . . 20 ((((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (fBas‘𝐴))
216214, 215syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (fBas‘𝐴))
21736ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → 𝐹:𝐴𝐵)
218 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
219 fgfil 22628 . . . . . . . . . . . . . . . . . . . . . 22 ((((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (Fil‘𝐴) → (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) = (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
220190, 219syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝐶) → (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) = (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
221220adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) = (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
222218, 221eleqtrrd 2836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (𝑣𝐴) ∈ (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)))
223 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) = (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))
224223imaelfm 22704 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ V ∧ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ (𝑣𝐴) ∈ (𝐴filGen(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))) → (𝐹 “ (𝑣𝐴)) ∈ ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)))
225213, 216, 217, 222, 224syl31anc 1374 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (𝐹 “ (𝑣𝐴)) ∈ ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)))
226 flimclsi 22731 . . . . . . . . . . . . . . . . . 18 ((𝐹 “ (𝑣𝐴)) ∈ ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (𝐾 fLim ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
227225, 226syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (𝐾 fLim ((𝐵 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑧}) ↾t 𝐴))) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
228210, 227eqsstrd 3915 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
229206, 228eqsstrrd 3916 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → { ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹)} ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
230 fvex 6689 . . . . . . . . . . . . . . . . 17 ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ∈ V
231230uniex 7487 . . . . . . . . . . . . . . . 16 ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ∈ V
232231snss 4674 . . . . . . . . . . . . . . 15 ( ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ∈ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ↔ { ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹)} ⊆ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
233229, 232sylibr 237 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑧}) ↾t 𝐴))‘𝐹) ∈ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
234181, 233eqeltrd 2833 . . . . . . . . . . . . 13 (((𝜑𝑧𝐶) ∧ (𝑣𝐴) ∈ (((nei‘𝐽)‘{𝑧}) ↾t 𝐴)) → (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
235166, 172, 179, 234syl21anc 837 . . . . . . . . . . . 12 (((𝜑𝑣𝐽) ∧ 𝑧𝑣) → (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
236235adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑣𝐽) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) ∧ 𝑧𝑣) → (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))))
237165, 236sseldd 3878 . . . . . . . . . 10 ((((𝜑𝑣𝐽) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) ∧ 𝑧𝑣) → (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤)
238237ralrimiva 3096 . . . . . . . . 9 (((𝜑𝑣𝐽) ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) → ∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤)
239238expl 461 . . . . . . . 8 (𝜑 → ((𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) → ∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤))
240239reximdv 3183 . . . . . . 7 (𝜑 → (∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤))
241240ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → (∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(𝑣𝐽 ∧ ((cls‘𝐾)‘(𝐹 “ (𝑣𝐴))) ⊆ 𝑤) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤))
242164, 241mpd 15 . . . . 5 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤)
24365, 42, 4, 32, 36, 69, 76, 86cnextf 22819 . . . . . . . . . 10 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
244243ffund 6508 . . . . . . . . 9 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
245244adantr 484 . . . . . . . 8 ((𝜑𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → Fun ((𝐽CnExt𝐾)‘𝐹))
24665neii1 21859 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑣𝐶)
2474, 246sylan 583 . . . . . . . . 9 ((𝜑𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑣𝐶)
248243fdmd 6515 . . . . . . . . . 10 (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)
249248adantr 484 . . . . . . . . 9 ((𝜑𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)
250247, 249sseqtrrd 3918 . . . . . . . 8 ((𝜑𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑣 ⊆ dom ((𝐽CnExt𝐾)‘𝐹))
251 funimass4 6736 . . . . . . . 8 ((Fun ((𝐽CnExt𝐾)‘𝐹) ∧ 𝑣 ⊆ dom ((𝐽CnExt𝐾)‘𝐹)) → ((((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤 ↔ ∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤))
252245, 250, 251syl2anc 587 . . . . . . 7 ((𝜑𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → ((((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤 ↔ ∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤))
253252biimprd 251 . . . . . 6 ((𝜑𝑣 ∈ ((nei‘𝐽)‘{𝑥})) → (∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤 → (((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤))
254253reximdva 3184 . . . . 5 (𝜑 → (∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})∀𝑧𝑣 (((𝐽CnExt𝐾)‘𝐹)‘𝑧) ∈ 𝑤 → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤))
2551, 242, 254sylc 65 . . . 4 (((𝜑𝑥𝐶) ∧ 𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})) → ∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤)
256255ralrimiva 3096 . . 3 ((𝜑𝑥𝐶) → ∀𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤)
257256ralrimiva 3096 . 2 (𝜑 → ∀𝑥𝐶𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤)
25865, 42cnnei 22035 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵) → (((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝐶𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤))
2594, 34, 243, 258syl3anc 1372 . 2 (𝜑 → (((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝐶𝑤 ∈ ((nei‘𝐾)‘{(((𝐽CnExt𝐾)‘𝐹)‘𝑥)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑥})(((𝐽CnExt𝐾)‘𝐹) “ 𝑣) ⊆ 𝑤))
260257, 259mpbird 260 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  Vcvv 3398  cin 3842  wss 3843  c0 4211  {csn 4516   cuni 4796   class class class wbr 5030  dom cdm 5525  ran crn 5526  cima 5528  Fun wfun 6333  wf 6335  cfv 6339  (class class class)co 7172  1oc1o 8126  cen 8554  t crest 16799  fBascfbas 20207  filGencfg 20208  Topctop 21646  TopOnctopon 21663  clsccl 21771  neicnei 21850   Cn ccn 21977  Hauscha 22061  Regcreg 22062  Filcfil 22598   FilMap cfm 22686   fLim cflim 22687   fLimf cflf 22688  CnExtccnext 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7175  df-oprab 7176  df-mpo 7177  df-1st 7716  df-2nd 7717  df-1o 8133  df-map 8441  df-pm 8442  df-en 8558  df-rest 16801  df-topgen 16822  df-fbas 20216  df-fg 20217  df-top 21647  df-topon 21664  df-cld 21772  df-ntr 21773  df-cls 21774  df-nei 21851  df-cn 21980  df-cnp 21981  df-haus 22068  df-reg 22069  df-fil 22599  df-fm 22691  df-flim 22692  df-flf 22693  df-cnext 22813
This theorem is referenced by:  cnextucn  23057
  Copyright terms: Public domain W3C validator