Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpineqsn Structured version   Visualization version   GIF version

Theorem nlpineqsn 37374
Description: For every point 𝑝 of a subset 𝐴 of 𝑋 with no limit points, there exists an open set 𝑛 that intersects 𝐴 only at 𝑝. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpineqsn ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Distinct variable groups:   𝐴,𝑛,𝑝   𝑛,𝐽,𝑝   𝑛,𝑋,𝑝

Proof of Theorem nlpineqsn
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐽 ∈ Top)
2 simp2 1137 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐴𝑋)
3 ssel2 4003 . . . . . . 7 ((𝐴𝑋𝑝𝐴) → 𝑝𝑋)
433adant1 1130 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝑝𝑋)
51, 2, 43jca 1128 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋))
6 noel 4360 . . . . . . . . 9 ¬ 𝑝 ∈ ∅
7 eleq2 2833 . . . . . . . . 9 (((limPt‘𝐽)‘𝐴) = ∅ → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ 𝑝 ∈ ∅))
86, 7mtbiri 327 . . . . . . . 8 (((limPt‘𝐽)‘𝐴) = ∅ → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
98adantl 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
10 nlpineqsn.x . . . . . . . . 9 𝑋 = 𝐽
1110islp3 23175 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
1211adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
139, 12mtbid 324 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
14 nne 2950 . . . . . . . . . 10 (¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅ ↔ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)
1514anbi2i 622 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
16 annim 403 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1715, 16bitr3i 277 . . . . . . . 8 ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1817rexbii 3100 . . . . . . 7 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
19 rexnal 3106 . . . . . . 7 (∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2018, 19bitri 275 . . . . . 6 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2113, 20sylibr 234 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
225, 21sylan 579 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
23 indif2 4300 . . . . . . . . . . . 12 (𝑛 ∩ (𝐴 ∖ {𝑝})) = ((𝑛𝐴) ∖ {𝑝})
2423eqeq1i 2745 . . . . . . . . . . 11 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
25 ssdif0 4389 . . . . . . . . . . 11 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
2624, 25bitr4i 278 . . . . . . . . . 10 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) ⊆ {𝑝})
27 elin 3992 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) ↔ (𝑝𝑛𝑝𝐴))
28 sssn 4851 . . . . . . . . . . . 12 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝}))
29 n0i 4363 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑛𝐴) → ¬ (𝑛𝐴) = ∅)
30 biorf 935 . . . . . . . . . . . . 13 (¬ (𝑛𝐴) = ∅ → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3129, 30syl 17 . . . . . . . . . . . 12 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3228, 31bitr4id 290 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3327, 32sylbir 235 . . . . . . . . . 10 ((𝑝𝑛𝑝𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3426, 33bitrid 283 . . . . . . . . 9 ((𝑝𝑛𝑝𝐴) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3534ancoms 458 . . . . . . . 8 ((𝑝𝐴𝑝𝑛) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3635pm5.32da 578 . . . . . . 7 (𝑝𝐴 → ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3736rexbidv 3185 . . . . . 6 (𝑝𝐴 → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
38373ad2ant3 1135 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3938adantr 480 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
4022, 39mpbid 232 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
41403an1rs 1359 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) ∧ 𝑝𝐴) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
4241ralrimiva 3152 1 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  cin 3975  wss 3976  c0 4352  {csn 4648   cuni 4931  cfv 6573  Topctop 22920  limPtclp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050  df-lp 23165
This theorem is referenced by:  nlpfvineqsn  37375  pibt2  37383
  Copyright terms: Public domain W3C validator