Proof of Theorem nlpineqsn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝐽 ∈ Top) | 
| 2 |  | simp2 1138 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝐴 ⊆ 𝑋) | 
| 3 |  | ssel2 3978 | . . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝑋) | 
| 4 | 3 | 3adant1 1131 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝑋) | 
| 5 | 1, 2, 4 | 3jca 1129 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → (𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋)) | 
| 6 |  | noel 4338 | . . . . . . . . 9
⊢  ¬
𝑝 ∈
∅ | 
| 7 |  | eleq2 2830 | . . . . . . . . 9
⊢
(((limPt‘𝐽)‘𝐴) = ∅ → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ 𝑝 ∈ ∅)) | 
| 8 | 6, 7 | mtbiri 327 | . . . . . . . 8
⊢
(((limPt‘𝐽)‘𝐴) = ∅ → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴)) | 
| 9 | 8 | adantl 481 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴)) | 
| 10 |  | nlpineqsn.x | . . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 | 
| 11 | 10 | islp3 23154 | . . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))) | 
| 12 | 11 | adantr 480 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))) | 
| 13 | 9, 12 | mtbid 324 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) | 
| 14 |  | nne 2944 | . . . . . . . . . 10
⊢ (¬
(𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅ ↔ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) | 
| 15 | 14 | anbi2i 623 | . . . . . . . . 9
⊢ ((𝑝 ∈ 𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)) | 
| 16 |  | annim 403 | . . . . . . . . 9
⊢ ((𝑝 ∈ 𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) | 
| 17 | 15, 16 | bitr3i 277 | . . . . . . . 8
⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) | 
| 18 | 17 | rexbii 3094 | . . . . . . 7
⊢
(∃𝑛 ∈
𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) | 
| 19 |  | rexnal 3100 | . . . . . . 7
⊢
(∃𝑛 ∈
𝐽 ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) | 
| 20 | 18, 19 | bitri 275 | . . . . . 6
⊢
(∃𝑛 ∈
𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) | 
| 21 | 13, 20 | sylibr 234 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)) | 
| 22 | 5, 21 | sylan 580 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)) | 
| 23 |  | indif2 4281 | . . . . . . . . . . . 12
⊢ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ((𝑛 ∩ 𝐴) ∖ {𝑝}) | 
| 24 | 23 | eqeq1i 2742 | . . . . . . . . . . 11
⊢ ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ ((𝑛 ∩ 𝐴) ∖ {𝑝}) = ∅) | 
| 25 |  | ssdif0 4366 | . . . . . . . . . . 11
⊢ ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ ((𝑛 ∩ 𝐴) ∖ {𝑝}) = ∅) | 
| 26 | 24, 25 | bitr4i 278 | . . . . . . . . . 10
⊢ ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛 ∩ 𝐴) ⊆ {𝑝}) | 
| 27 |  | elin 3967 | . . . . . . . . . . 11
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) ↔ (𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴)) | 
| 28 |  | sssn 4826 | . . . . . . . . . . . 12
⊢ ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ ((𝑛 ∩ 𝐴) = ∅ ∨ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 29 |  | n0i 4340 | . . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) → ¬ (𝑛 ∩ 𝐴) = ∅) | 
| 30 |  | biorf 937 | . . . . . . . . . . . . 13
⊢ (¬
(𝑛 ∩ 𝐴) = ∅ → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑛 ∩ 𝐴) = ∅ ∨ (𝑛 ∩ 𝐴) = {𝑝}))) | 
| 31 | 29, 30 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑛 ∩ 𝐴) = ∅ ∨ (𝑛 ∩ 𝐴) = {𝑝}))) | 
| 32 | 28, 31 | bitr4id 290 | . . . . . . . . . . 11
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) → ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 33 | 27, 32 | sylbir 235 | . . . . . . . . . 10
⊢ ((𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴) → ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 34 | 26, 33 | bitrid 283 | . . . . . . . . 9
⊢ ((𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 35 | 34 | ancoms 458 | . . . . . . . 8
⊢ ((𝑝 ∈ 𝐴 ∧ 𝑝 ∈ 𝑛) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 36 | 35 | pm5.32da 579 | . . . . . . 7
⊢ (𝑝 ∈ 𝐴 → ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) | 
| 37 | 36 | rexbidv 3179 | . . . . . 6
⊢ (𝑝 ∈ 𝐴 → (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) | 
| 38 | 37 | 3ad2ant3 1136 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) | 
| 39 | 38 | adantr 480 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) | 
| 40 | 22, 39 | mpbid 232 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 41 | 40 | 3an1rs 1360 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) ∧ 𝑝 ∈ 𝐴) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) | 
| 42 | 41 | ralrimiva 3146 | 1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |