Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpineqsn Structured version   Visualization version   GIF version

Theorem nlpineqsn 35811
Description: For every point 𝑝 of a subset 𝐴 of 𝑋 with no limit points, there exists an open set 𝑛 that intersects 𝐴 only at 𝑝. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpineqsn ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Distinct variable groups:   𝐴,𝑛,𝑝   𝑛,𝐽,𝑝   𝑛,𝑋,𝑝

Proof of Theorem nlpineqsn
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐽 ∈ Top)
2 simp2 1137 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐴𝑋)
3 ssel2 3937 . . . . . . 7 ((𝐴𝑋𝑝𝐴) → 𝑝𝑋)
433adant1 1130 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝑝𝑋)
51, 2, 43jca 1128 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋))
6 noel 4288 . . . . . . . . 9 ¬ 𝑝 ∈ ∅
7 eleq2 2826 . . . . . . . . 9 (((limPt‘𝐽)‘𝐴) = ∅ → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ 𝑝 ∈ ∅))
86, 7mtbiri 326 . . . . . . . 8 (((limPt‘𝐽)‘𝐴) = ∅ → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
98adantl 482 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
10 nlpineqsn.x . . . . . . . . 9 𝑋 = 𝐽
1110islp3 22443 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
1211adantr 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
139, 12mtbid 323 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
14 nne 2945 . . . . . . . . . 10 (¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅ ↔ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)
1514anbi2i 623 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
16 annim 404 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1715, 16bitr3i 276 . . . . . . . 8 ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1817rexbii 3095 . . . . . . 7 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
19 rexnal 3101 . . . . . . 7 (∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2018, 19bitri 274 . . . . . 6 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2113, 20sylibr 233 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
225, 21sylan 580 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
23 indif2 4228 . . . . . . . . . . . 12 (𝑛 ∩ (𝐴 ∖ {𝑝})) = ((𝑛𝐴) ∖ {𝑝})
2423eqeq1i 2741 . . . . . . . . . . 11 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
25 ssdif0 4321 . . . . . . . . . . 11 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
2624, 25bitr4i 277 . . . . . . . . . 10 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) ⊆ {𝑝})
27 elin 3924 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) ↔ (𝑝𝑛𝑝𝐴))
28 sssn 4784 . . . . . . . . . . . 12 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝}))
29 n0i 4291 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑛𝐴) → ¬ (𝑛𝐴) = ∅)
30 biorf 935 . . . . . . . . . . . . 13 (¬ (𝑛𝐴) = ∅ → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3129, 30syl 17 . . . . . . . . . . . 12 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3228, 31bitr4id 289 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3327, 32sylbir 234 . . . . . . . . . 10 ((𝑝𝑛𝑝𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3426, 33bitrid 282 . . . . . . . . 9 ((𝑝𝑛𝑝𝐴) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3534ancoms 459 . . . . . . . 8 ((𝑝𝐴𝑝𝑛) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3635pm5.32da 579 . . . . . . 7 (𝑝𝐴 → ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3736rexbidv 3173 . . . . . 6 (𝑝𝐴 → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
38373ad2ant3 1135 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3938adantr 481 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
4022, 39mpbid 231 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
41403an1rs 1359 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) ∧ 𝑝𝐴) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
4241ralrimiva 3141 1 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  cdif 3905  cin 3907  wss 3908  c0 4280  {csn 4584   cuni 4863  cfv 6493  Topctop 22188  limPtclp 22431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-top 22189  df-cld 22316  df-ntr 22317  df-cls 22318  df-lp 22433
This theorem is referenced by:  nlpfvineqsn  35812  pibt2  35820
  Copyright terms: Public domain W3C validator