Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpineqsn Structured version   Visualization version   GIF version

Theorem nlpineqsn 35316
Description: For every point 𝑝 of a subset 𝐴 of 𝑋 with no limit points, there exists an open set 𝑛 that intersects 𝐴 only at 𝑝. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpineqsn ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Distinct variable groups:   𝐴,𝑛,𝑝   𝑛,𝐽,𝑝   𝑛,𝑋,𝑝

Proof of Theorem nlpineqsn
StepHypRef Expression
1 simp1 1138 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐽 ∈ Top)
2 simp2 1139 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐴𝑋)
3 ssel2 3895 . . . . . . 7 ((𝐴𝑋𝑝𝐴) → 𝑝𝑋)
433adant1 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝑝𝑋)
51, 2, 43jca 1130 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋))
6 noel 4245 . . . . . . . . 9 ¬ 𝑝 ∈ ∅
7 eleq2 2826 . . . . . . . . 9 (((limPt‘𝐽)‘𝐴) = ∅ → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ 𝑝 ∈ ∅))
86, 7mtbiri 330 . . . . . . . 8 (((limPt‘𝐽)‘𝐴) = ∅ → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
98adantl 485 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
10 nlpineqsn.x . . . . . . . . 9 𝑋 = 𝐽
1110islp3 22043 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
1211adantr 484 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
139, 12mtbid 327 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
14 nne 2944 . . . . . . . . . 10 (¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅ ↔ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)
1514anbi2i 626 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
16 annim 407 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1715, 16bitr3i 280 . . . . . . . 8 ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1817rexbii 3170 . . . . . . 7 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
19 rexnal 3160 . . . . . . 7 (∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2018, 19bitri 278 . . . . . 6 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2113, 20sylibr 237 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
225, 21sylan 583 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
23 indif2 4185 . . . . . . . . . . . 12 (𝑛 ∩ (𝐴 ∖ {𝑝})) = ((𝑛𝐴) ∖ {𝑝})
2423eqeq1i 2742 . . . . . . . . . . 11 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
25 ssdif0 4278 . . . . . . . . . . 11 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
2624, 25bitr4i 281 . . . . . . . . . 10 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) ⊆ {𝑝})
27 elin 3882 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) ↔ (𝑝𝑛𝑝𝐴))
28 sssn 4739 . . . . . . . . . . . 12 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝}))
29 n0i 4248 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑛𝐴) → ¬ (𝑛𝐴) = ∅)
30 biorf 937 . . . . . . . . . . . . 13 (¬ (𝑛𝐴) = ∅ → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3129, 30syl 17 . . . . . . . . . . . 12 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3228, 31bitr4id 293 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3327, 32sylbir 238 . . . . . . . . . 10 ((𝑝𝑛𝑝𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3426, 33syl5bb 286 . . . . . . . . 9 ((𝑝𝑛𝑝𝐴) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3534ancoms 462 . . . . . . . 8 ((𝑝𝐴𝑝𝑛) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3635pm5.32da 582 . . . . . . 7 (𝑝𝐴 → ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3736rexbidv 3216 . . . . . 6 (𝑝𝐴 → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
38373ad2ant3 1137 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3938adantr 484 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
4022, 39mpbid 235 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
41403an1rs 1361 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) ∧ 𝑝𝐴) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
4241ralrimiva 3105 1 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  cdif 3863  cin 3865  wss 3866  c0 4237  {csn 4541   cuni 4819  cfv 6380  Topctop 21790  limPtclp 22031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-top 21791  df-cld 21916  df-ntr 21917  df-cls 21918  df-lp 22033
This theorem is referenced by:  nlpfvineqsn  35317  pibt2  35325
  Copyright terms: Public domain W3C validator