Proof of Theorem nlpineqsn
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝐽 ∈ Top) |
2 | | simp2 1136 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝐴 ⊆ 𝑋) |
3 | | ssel2 3916 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝑋) |
4 | 3 | 3adant1 1129 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝑋) |
5 | 1, 2, 4 | 3jca 1127 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → (𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋)) |
6 | | noel 4264 |
. . . . . . . . 9
⊢ ¬
𝑝 ∈
∅ |
7 | | eleq2 2827 |
. . . . . . . . 9
⊢
(((limPt‘𝐽)‘𝐴) = ∅ → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ 𝑝 ∈ ∅)) |
8 | 6, 7 | mtbiri 327 |
. . . . . . . 8
⊢
(((limPt‘𝐽)‘𝐴) = ∅ → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴)) |
9 | 8 | adantl 482 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴)) |
10 | | nlpineqsn.x |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 |
11 | 10 | islp3 22297 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))) |
12 | 11 | adantr 481 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))) |
13 | 9, 12 | mtbid 324 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) |
14 | | nne 2947 |
. . . . . . . . . 10
⊢ (¬
(𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅ ↔ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) |
15 | 14 | anbi2i 623 |
. . . . . . . . 9
⊢ ((𝑝 ∈ 𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)) |
16 | | annim 404 |
. . . . . . . . 9
⊢ ((𝑝 ∈ 𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) |
17 | 15, 16 | bitr3i 276 |
. . . . . . . 8
⊢ ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) |
18 | 17 | rexbii 3181 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) |
19 | | rexnal 3169 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝐽 ¬ (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) |
20 | 18, 19 | bitri 274 |
. . . . . 6
⊢
(∃𝑛 ∈
𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ ∀𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)) |
21 | 13, 20 | sylibr 233 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)) |
22 | 5, 21 | sylan 580 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)) |
23 | | indif2 4204 |
. . . . . . . . . . . 12
⊢ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ((𝑛 ∩ 𝐴) ∖ {𝑝}) |
24 | 23 | eqeq1i 2743 |
. . . . . . . . . . 11
⊢ ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ ((𝑛 ∩ 𝐴) ∖ {𝑝}) = ∅) |
25 | | ssdif0 4297 |
. . . . . . . . . . 11
⊢ ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ ((𝑛 ∩ 𝐴) ∖ {𝑝}) = ∅) |
26 | 24, 25 | bitr4i 277 |
. . . . . . . . . 10
⊢ ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛 ∩ 𝐴) ⊆ {𝑝}) |
27 | | elin 3903 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) ↔ (𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴)) |
28 | | sssn 4759 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ ((𝑛 ∩ 𝐴) = ∅ ∨ (𝑛 ∩ 𝐴) = {𝑝})) |
29 | | n0i 4267 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) → ¬ (𝑛 ∩ 𝐴) = ∅) |
30 | | biorf 934 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑛 ∩ 𝐴) = ∅ → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑛 ∩ 𝐴) = ∅ ∨ (𝑛 ∩ 𝐴) = {𝑝}))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) → ((𝑛 ∩ 𝐴) = {𝑝} ↔ ((𝑛 ∩ 𝐴) = ∅ ∨ (𝑛 ∩ 𝐴) = {𝑝}))) |
32 | 28, 31 | bitr4id 290 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ (𝑛 ∩ 𝐴) → ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ (𝑛 ∩ 𝐴) = {𝑝})) |
33 | 27, 32 | sylbir 234 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴) → ((𝑛 ∩ 𝐴) ⊆ {𝑝} ↔ (𝑛 ∩ 𝐴) = {𝑝})) |
34 | 26, 33 | syl5bb 283 |
. . . . . . . . 9
⊢ ((𝑝 ∈ 𝑛 ∧ 𝑝 ∈ 𝐴) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛 ∩ 𝐴) = {𝑝})) |
35 | 34 | ancoms 459 |
. . . . . . . 8
⊢ ((𝑝 ∈ 𝐴 ∧ 𝑝 ∈ 𝑛) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛 ∩ 𝐴) = {𝑝})) |
36 | 35 | pm5.32da 579 |
. . . . . . 7
⊢ (𝑝 ∈ 𝐴 → ((𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) |
37 | 36 | rexbidv 3226 |
. . . . . 6
⊢ (𝑝 ∈ 𝐴 → (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) |
38 | 37 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) → (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) |
39 | 38 | adantr 481 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝}))) |
40 | 22, 39 | mpbid 231 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑝 ∈ 𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
41 | 40 | 3an1rs 1358 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) ∧ 𝑝 ∈ 𝐴) → ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |
42 | 41 | ralrimiva 3103 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝 ∈ 𝐴 ∃𝑛 ∈ 𝐽 (𝑝 ∈ 𝑛 ∧ (𝑛 ∩ 𝐴) = {𝑝})) |