Step | Hyp | Ref
| Expression |
1 | | itgsubst.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
2 | | itgsubst.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ ℝ) |
3 | | itgsubst.le |
. . 3
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
4 | | ioossre 13069 |
. . . . 5
⊢ (𝑍(,)𝑊) ⊆ ℝ |
5 | | ax-resscn 10859 |
. . . . 5
⊢ ℝ
⊆ ℂ |
6 | | cncfss 23968 |
. . . . 5
⊢ (((𝑍(,)𝑊) ⊆ ℝ ∧ ℝ ⊆
ℂ) → ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ)) |
7 | 4, 5, 6 | mp2an 688 |
. . . 4
⊢ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ) |
8 | | itgsubst.a |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) |
9 | 7, 8 | sselid 3915 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ)) |
10 | 1, 2, 3, 9 | evthicc 24528 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) |
11 | | ressxr 10950 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
12 | 4, 11 | sstri 3926 |
. . . . . . 7
⊢ (𝑍(,)𝑊) ⊆
ℝ* |
13 | | cncff 23962 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
14 | 8, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
16 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑦 ∈ (𝑋[,]𝑌)) |
17 | 15, 16 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊)) |
18 | 12, 17 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
19 | | itgsubst.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈
ℝ*) |
20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑊 ∈
ℝ*) |
21 | | eliooord 13067 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)) |
22 | 17, 21 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)) |
23 | 22 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) |
24 | | qbtwnxr 12863 |
. . . . . 6
⊢ ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ 𝑊 ∈ ℝ*
∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊)) |
25 | 18, 20, 23, 24 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊)) |
26 | | qre 12622 |
. . . . . . 7
⊢ (𝑛 ∈ ℚ → 𝑛 ∈
ℝ) |
27 | 26 | ad2antrl 724 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑛 ∈ ℝ) |
28 | | itgsubst.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈
ℝ*) |
29 | 28 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑍 ∈
ℝ*) |
30 | 18 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
31 | 27 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑛 ∈ ℝ*) |
32 | 22 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) |
34 | | simprrl 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) |
35 | 29, 30, 31, 33, 34 | xrlttrd 12822 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑍 < 𝑛) |
36 | | simprrr 778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑛 < 𝑊) |
37 | 19 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑊 ∈
ℝ*) |
38 | | elioo2 13049 |
. . . . . . 7
⊢ ((𝑍 ∈ ℝ*
∧ 𝑊 ∈
ℝ*) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛 ∧ 𝑛 < 𝑊))) |
39 | 29, 37, 38 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛 ∧ 𝑛 < 𝑊))) |
40 | 27, 35, 36, 39 | mpbir3and 1340 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑛 ∈ (𝑍(,)𝑊)) |
41 | | anass 468 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) |
42 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) |
43 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) |
44 | 14 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
45 | 44 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊)) |
46 | 12, 45 | sselid 3915 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈
ℝ*) |
47 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑦 ∈ (𝑋[,]𝑌)) |
48 | 44, 47 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊)) |
49 | 12, 48 | sselid 3915 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
50 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
51 | 26 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → 𝑛 ∈ ℝ) |
52 | 51 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ) |
53 | 52 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*) |
54 | | xrlelttr 12819 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ 𝑛 ∈ ℝ*)
→ ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
55 | 46, 50, 53, 54 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
56 | 43, 55 | mpan2d 690 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
57 | 56 | ralimdva 3102 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
58 | 57 | imp 406 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) |
59 | 58 | an32s 648 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) |
60 | 41, 59 | sylanbr 581 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛 ∧ 𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) |
61 | 25, 40, 60 | reximssdv 3204 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) |
62 | 61 | rexlimdvaa 3213 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
63 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 ∈
ℝ*) |
64 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
65 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑦 ∈ (𝑋[,]𝑌)) |
66 | 64, 65 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊)) |
67 | 12, 66 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
68 | 66, 21 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)) |
69 | 68 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) |
70 | | qbtwnxr 12863 |
. . . . . 6
⊢ ((𝑍 ∈ ℝ*
∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) |
71 | 63, 67, 69, 70 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) |
72 | | qre 12622 |
. . . . . . 7
⊢ (𝑚 ∈ ℚ → 𝑚 ∈
ℝ) |
73 | 72 | ad2antrl 724 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ) |
74 | | simprrl 777 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 < 𝑚) |
75 | 73 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ*) |
76 | 67 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
77 | 19 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑊 ∈
ℝ*) |
78 | | simprrr 778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) |
79 | 68 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) |
80 | 79 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) |
81 | 75, 76, 77, 78, 80 | xrlttrd 12822 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < 𝑊) |
82 | 28 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 ∈
ℝ*) |
83 | | elioo2 13049 |
. . . . . . 7
⊢ ((𝑍 ∈ ℝ*
∧ 𝑊 ∈
ℝ*) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚 ∧ 𝑚 < 𝑊))) |
84 | 82, 77, 83 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚 ∧ 𝑚 < 𝑊))) |
85 | 73, 74, 81, 84 | mpbir3and 1340 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ (𝑍(,)𝑊)) |
86 | | anass 468 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))) |
87 | | simprrr 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) |
88 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) |
89 | 72 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ) |
90 | 89 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ) |
91 | 90 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*) |
92 | 14 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
93 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑦 ∈ (𝑋[,]𝑌)) |
94 | 92, 93 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊)) |
95 | 12, 94 | sselid 3915 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
96 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈
ℝ*) |
97 | 92 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊)) |
98 | 12, 97 | sselid 3915 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈
ℝ*) |
99 | | xrltletr 12820 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ*
∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) |
100 | 91, 96, 98, 99 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) |
101 | 88, 100 | mpand 691 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) |
102 | 101 | ralimdva 3102 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) |
103 | 102 | imp 406 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) |
104 | 103 | an32s 648 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) |
105 | 86, 104 | sylanbr 581 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚 ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) |
106 | 71, 85, 105 | reximssdv 3204 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) |
107 | 106 | rexlimdvaa 3213 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) |
108 | | ancom 460 |
. . . . 5
⊢
((∃𝑛 ∈
(𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
109 | | reeanv 3292 |
. . . . 5
⊢
(∃𝑚 ∈
(𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
110 | 108, 109 | bitr4i 277 |
. . . 4
⊢
((∃𝑛 ∈
(𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ ∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
111 | | r19.26 3094 |
. . . . . 6
⊢
(∀𝑧 ∈
(𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)) |
112 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊)) |
113 | 112 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊)) |
114 | 4, 113 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ) |
115 | 114 | 3biant1d 1476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))) |
116 | | simplrl 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ (𝑍(,)𝑊)) |
117 | 12, 116 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*) |
118 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ (𝑍(,)𝑊)) |
119 | 12, 118 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*) |
120 | | elioo2 13049 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℝ*
∧ 𝑛 ∈
ℝ*) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))) |
121 | 117, 119,
120 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))) |
122 | 115, 121 | bitr4d 281 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛))) |
123 | 122 | ralbidva 3119 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛))) |
124 | | nffvmpt1 6767 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) |
125 | 124 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) |
126 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) |
127 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥)) |
128 | 127 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛))) |
129 | 125, 126,
128 | cbvralw 3363 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
(𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)) |
130 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝑥 ∈ (𝑋[,]𝑌)) |
131 | 14 | fvmptelrn 6969 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑍(,)𝑊)) |
132 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) |
133 | 132 | fvmpt2 6868 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝑋[,]𝑌) ∧ 𝐴 ∈ (𝑍(,)𝑊)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴) |
134 | 130, 131,
133 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴) |
135 | 134 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ 𝐴 ∈ (𝑚(,)𝑛))) |
136 | 135 | ralbidva 3119 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) |
137 | 129, 136 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) |
138 | 137 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) |
139 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋 ∈ ℝ) |
140 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑌 ∈ ℝ) |
141 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋 ≤ 𝑌) |
142 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑍 ∈
ℝ*) |
143 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑊 ∈
ℝ*) |
144 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝐴 |
145 | | nfcsb1v 3853 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 |
146 | | csbeq1a 3842 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) |
147 | 144, 145,
146 | cbvmpt 5181 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑦 ∈ (𝑋[,]𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐴) |
148 | 147, 8 | eqeltrrid 2844 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) |
149 | 148 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋[,]𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) |
150 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝐵 |
151 | | nfcsb1v 3853 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
152 | | csbeq1a 3842 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
153 | 150, 151,
152 | cbvmpt 5181 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) = (𝑦 ∈ (𝑋(,)𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐵) |
154 | | itgsubst.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩
𝐿1)) |
155 | 153, 154 | eqeltrrid 2844 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩
𝐿1)) |
156 | 155 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋(,)𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩
𝐿1)) |
157 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣𝐶 |
158 | | nfcsb1v 3853 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑢⦋𝑣 / 𝑢⦌𝐶 |
159 | | csbeq1a 3842 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑣 → 𝐶 = ⦋𝑣 / 𝑢⦌𝐶) |
160 | 157, 158,
159 | cbvmpt 5181 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) = (𝑣 ∈ (𝑍(,)𝑊) ↦ ⦋𝑣 / 𝑢⦌𝐶) |
161 | | itgsubst.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) |
162 | 160, 161 | eqeltrrid 2844 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑣 ∈ (𝑍(,)𝑊) ↦ ⦋𝑣 / 𝑢⦌𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) |
163 | 162 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑣 ∈ (𝑍(,)𝑊) ↦ ⦋𝑣 / 𝑢⦌𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) |
164 | | itgsubst.da |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
165 | 147 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢ (ℝ
D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐴)) |
166 | 164, 165,
153 | 3eqtr3g 2802 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
167 | 166 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
168 | | csbeq1 3831 |
. . . . . . . . . . 11
⊢ (𝑣 = ⦋𝑦 / 𝑥⦌𝐴 → ⦋𝑣 / 𝑢⦌𝐶 = ⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶) |
169 | | csbeq1 3831 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑋 / 𝑥⦌𝐴) |
170 | | csbeq1 3831 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑌 / 𝑥⦌𝐴) |
171 | | simprll 775 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑚 ∈ (𝑍(,)𝑊)) |
172 | | simprlr 776 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑛 ∈ (𝑍(,)𝑊)) |
173 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)) |
174 | 145 | nfel1 2922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ (𝑚(,)𝑛) |
175 | 146 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐴 ∈ (𝑚(,)𝑛) ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ (𝑚(,)𝑛))) |
176 | 174, 175 | rspc 3539 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑋[,]𝑌) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → ⦋𝑦 / 𝑥⦌𝐴 ∈ (𝑚(,)𝑛))) |
177 | 173, 176 | mpan9 506 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) ∧ 𝑦 ∈ (𝑋[,]𝑌)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ (𝑚(,)𝑛)) |
178 | 139, 140,
141, 142, 143, 149, 156, 163, 167, 168, 169, 170, 171, 172, 177 | itgsubstlem 25117 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[⦋𝑋 / 𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]⦋𝑣 / 𝑢⦌𝐶 d𝑣 = ⨜[𝑋 → 𝑌](⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
179 | 159, 157,
158 | cbvditg 24923 |
. . . . . . . . . . . 12
⊢
⨜[⦋𝑋 / 𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢 = ⨜[⦋𝑋 / 𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]⦋𝑣 / 𝑢⦌𝐶 d𝑣 |
180 | | nfcvd 2907 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ℝ →
Ⅎ𝑥𝐾) |
181 | | itgsubst.k |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) |
182 | 180, 181 | csbiegf 3862 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℝ →
⦋𝑋 / 𝑥⦌𝐴 = 𝐾) |
183 | | ditgeq1 24917 |
. . . . . . . . . . . . . 14
⊢
(⦋𝑋 /
𝑥⦌𝐴 = 𝐾 → ⨜[⦋𝑋 / 𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢 = ⨜[𝐾 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢) |
184 | 1, 182, 183 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
⨜[⦋𝑋 /
𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢 = ⨜[𝐾 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢) |
185 | | nfcvd 2907 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 ∈ ℝ →
Ⅎ𝑥𝐿) |
186 | | itgsubst.l |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) |
187 | 185, 186 | csbiegf 3862 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ ℝ →
⦋𝑌 / 𝑥⦌𝐴 = 𝐿) |
188 | | ditgeq2 24918 |
. . . . . . . . . . . . . 14
⊢
(⦋𝑌 /
𝑥⦌𝐴 = 𝐿 → ⨜[𝐾 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢 = ⨜[𝐾 → 𝐿]𝐶 d𝑢) |
189 | 2, 187, 188 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ⨜[𝐾 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢 = ⨜[𝐾 → 𝐿]𝐶 d𝑢) |
190 | 184, 189 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 →
⨜[⦋𝑋 /
𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]𝐶 d𝑢 = ⨜[𝐾 → 𝐿]𝐶 d𝑢) |
191 | 179, 190 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ (𝜑 →
⨜[⦋𝑋 /
𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]⦋𝑣 / 𝑢⦌𝐶 d𝑣 = ⨜[𝐾 → 𝐿]𝐶 d𝑢) |
192 | 191 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[⦋𝑋 / 𝑥⦌𝐴 → ⦋𝑌 / 𝑥⦌𝐴]⦋𝑣 / 𝑢⦌𝐶 d𝑣 = ⨜[𝐾 → 𝐿]𝐶 d𝑢) |
193 | 146 | csbeq1d 3832 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ⦋𝐴 / 𝑢⦌𝐶 = ⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶) |
194 | 193, 152 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (⦋𝐴 / 𝑢⦌𝐶 · 𝐵) = (⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 · ⦋𝑦 / 𝑥⦌𝐵)) |
195 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(⦋𝐴 / 𝑢⦌𝐶 · 𝐵) |
196 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝐶 |
197 | 145, 196 | nfcsbw 3855 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 |
198 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥
· |
199 | 197, 198,
151 | nfov 7285 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 · ⦋𝑦 / 𝑥⦌𝐵) |
200 | 194, 195,
199 | cbvditg 24923 |
. . . . . . . . . . . 12
⊢
⨜[𝑋 →
𝑌](⦋𝐴 / 𝑢⦌𝐶 · 𝐵) d𝑥 = ⨜[𝑋 → 𝑌](⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 · ⦋𝑦 / 𝑥⦌𝐵) d𝑦 |
201 | | ioossicc 13094 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) |
202 | 201 | sseli 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌)) |
203 | 202, 131 | sylan2 592 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝑍(,)𝑊)) |
204 | | nfcvd 2907 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ (𝑍(,)𝑊) → Ⅎ𝑢𝐸) |
205 | | itgsubst.e |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) |
206 | 204, 205 | csbiegf 3862 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (𝑍(,)𝑊) → ⦋𝐴 / 𝑢⦌𝐶 = 𝐸) |
207 | 203, 206 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → ⦋𝐴 / 𝑢⦌𝐶 = 𝐸) |
208 | 207 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → (⦋𝐴 / 𝑢⦌𝐶 · 𝐵) = (𝐸 · 𝐵)) |
209 | 208 | itgeq2dv 24851 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∫(𝑋(,)𝑌)(⦋𝐴 / 𝑢⦌𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥) |
210 | 3 | ditgpos 24925 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ⨜[𝑋 → 𝑌](⦋𝐴 / 𝑢⦌𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(⦋𝐴 / 𝑢⦌𝐶 · 𝐵) d𝑥) |
211 | 3 | ditgpos 24925 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥) |
212 | 209, 210,
211 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ (𝜑 → ⨜[𝑋 → 𝑌](⦋𝐴 / 𝑢⦌𝐶 · 𝐵) d𝑥 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
213 | 200, 212 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ (𝜑 → ⨜[𝑋 → 𝑌](⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 · ⦋𝑦 / 𝑥⦌𝐵) d𝑦 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
214 | 213 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 → 𝑌](⦋⦋𝑦 / 𝑥⦌𝐴 / 𝑢⦌𝐶 · ⦋𝑦 / 𝑥⦌𝐵) d𝑦 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
215 | 178, 192,
214 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
216 | 215 | expr 456 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
217 | 138, 216 | sylbid 239 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
218 | 123, 217 | sylbid 239 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
219 | 111, 218 | syl5bir 242 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → ((∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
220 | 219 | rexlimdvva 3222 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
221 | 110, 220 | syl5bi 241 |
. . 3
⊢ (𝜑 → ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
222 | 62, 107, 221 | syl2and 607 |
. 2
⊢ (𝜑 → ((∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥)) |
223 | 10, 222 | mpd 15 |
1
⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |