MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Structured version   Visualization version   GIF version

Theorem itgsubst 26104
Description: Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 26103, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x (𝜑𝑋 ∈ ℝ)
itgsubst.y (𝜑𝑌 ∈ ℝ)
itgsubst.le (𝜑𝑋𝑌)
itgsubst.z (𝜑𝑍 ∈ ℝ*)
itgsubst.w (𝜑𝑊 ∈ ℝ*)
itgsubst.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
itgsubst.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubst.c (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
itgsubst.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubst.e (𝑢 = 𝐴𝐶 = 𝐸)
itgsubst.k (𝑥 = 𝑋𝐴 = 𝐾)
itgsubst.l (𝑥 = 𝑌𝐴 = 𝐿)
Assertion
Ref Expression
itgsubst (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐸   𝑥,𝑢,𝐾   𝜑,𝑢,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝑢,𝐴   𝑥,𝐶   𝑢,𝑊,𝑥   𝑢,𝐿,𝑥   𝑢,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubst
Dummy variables 𝑚 𝑛 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3 (𝜑𝑋 ∈ ℝ)
2 itgsubst.y . . 3 (𝜑𝑌 ∈ ℝ)
3 itgsubst.le . . 3 (𝜑𝑋𝑌)
4 ioossre 13444 . . . . 5 (𝑍(,)𝑊) ⊆ ℝ
5 ax-resscn 11209 . . . . 5 ℝ ⊆ ℂ
6 cncfss 24938 . . . . 5 (((𝑍(,)𝑊) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ))
74, 5, 6mp2an 692 . . . 4 ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ)
8 itgsubst.a . . . 4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
97, 8sselid 3992 . . 3 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
101, 2, 3, 9evthicc 25507 . 2 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
11 ressxr 11302 . . . . . . . 8 ℝ ⊆ ℝ*
124, 11sstri 4004 . . . . . . 7 (𝑍(,)𝑊) ⊆ ℝ*
13 cncff 24932 . . . . . . . . . 10 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
148, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
1514adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
16 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑦 ∈ (𝑋[,]𝑌))
1715, 16ffvelcdmd 7104 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
1812, 17sselid 3992 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
19 itgsubst.w . . . . . . 7 (𝜑𝑊 ∈ ℝ*)
2019adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑊 ∈ ℝ*)
21 eliooord 13442 . . . . . . . 8 (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2217, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2322simprd 495 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
24 qbtwnxr 13238 . . . . . 6 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑊 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
2518, 20, 23, 24syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
26 qre 12992 . . . . . . 7 (𝑛 ∈ ℚ → 𝑛 ∈ ℝ)
2726ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
28 itgsubst.z . . . . . . . 8 (𝜑𝑍 ∈ ℝ*)
2928ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 ∈ ℝ*)
3018adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
3127rexrd 11308 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ*)
3222simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
3332adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
34 simprrl 781 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
3529, 30, 31, 33, 34xrlttrd 13197 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < 𝑛)
36 simprrr 782 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 < 𝑊)
3719ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑊 ∈ ℝ*)
38 elioo2 13424 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
3929, 37, 38syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
4027, 35, 36, 39mpbir3and 1341 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ (𝑍(,)𝑊))
41 anass 468 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))))
42 simprrl 781 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4342adantr 480 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4414ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
4544ffvelcdmda 7103 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
4612, 45sselid 3992 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
47 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑦 ∈ (𝑋[,]𝑌))
4844, 47ffvelcdmd 7104 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
4912, 48sselid 3992 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5049adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5126ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ)
5352rexrd 11308 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
54 xrlelttr 13194 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑛 ∈ ℝ*) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5546, 50, 53, 54syl3anc 1370 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5643, 55mpan2d 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5756ralimdva 3164 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5857imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
5958an32s 652 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6041, 59sylanbr 582 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6125, 40, 60reximssdv 3170 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6261rexlimdvaa 3153 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
6328adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 ∈ ℝ*)
6414adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
65 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑦 ∈ (𝑋[,]𝑌))
6664, 65ffvelcdmd 7104 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
6712, 66sselid 3992 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
6866, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
6968simpld 494 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
70 qbtwnxr 13238 . . . . . 6 ((𝑍 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
7163, 67, 69, 70syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
72 qre 12992 . . . . . . 7 (𝑚 ∈ ℚ → 𝑚 ∈ ℝ)
7372ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
74 simprrl 781 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 < 𝑚)
7573rexrd 11308 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ*)
7667adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
7719ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑊 ∈ ℝ*)
78 simprrr 782 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
7968simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8079adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8175, 76, 77, 78, 80xrlttrd 13197 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < 𝑊)
8228ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 ∈ ℝ*)
83 elioo2 13424 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8482, 77, 83syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8573, 74, 81, 84mpbir3and 1341 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ (𝑍(,)𝑊))
86 anass 468 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))))
87 simprrr 782 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8887adantr 480 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8972ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ)
9190rexrd 11308 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
9214ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
93 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑦 ∈ (𝑋[,]𝑌))
9492, 93ffvelcdmd 7104 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
9512, 94sselid 3992 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9695adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9792ffvelcdmda 7103 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
9812, 97sselid 3992 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
99 xrltletr 13195 . . . . . . . . . . 11 ((𝑚 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10091, 96, 98, 99syl3anc 1370 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10188, 100mpand 695 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
102101ralimdva 3164 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
103102imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
104103an32s 652 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10586, 104sylanbr 582 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10671, 85, 105reximssdv 3170 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
107106rexlimdvaa 3153 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
108 ancom 460 . . . . 5 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
109 reeanv 3226 . . . . 5 (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
110108, 109bitr4i 278 . . . 4 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ ∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
111 r19.26 3108 . . . . . 6 (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
11214adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
113112ffvelcdmda 7103 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
1144, 113sselid 3992 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ)
1151143biant1d 1477 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
116 simplrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ (𝑍(,)𝑊))
11712, 116sselid 3992 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
118 simplrr 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ (𝑍(,)𝑊))
11912, 118sselid 3992 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
120 elioo2 13424 . . . . . . . . . 10 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
121117, 119, 120syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
122115, 121bitr4d 282 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
123122ralbidva 3173 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
124 nffvmpt1 6917 . . . . . . . . . . . 12 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)
125124nfel1 2919 . . . . . . . . . . 11 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)
126 nfv 1911 . . . . . . . . . . 11 𝑧((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)
127 fveq2 6906 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥))
128127eleq1d 2823 . . . . . . . . . . 11 (𝑧 = 𝑥 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)))
129125, 126, 128cbvralw 3303 . . . . . . . . . 10 (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛))
130 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝑥 ∈ (𝑋[,]𝑌))
13114fvmptelcdm 7132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
132 eqid 2734 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)
133132fvmpt2 7026 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑋[,]𝑌) ∧ 𝐴 ∈ (𝑍(,)𝑊)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
134130, 131, 133syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
135134eleq1d 2823 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ 𝐴 ∈ (𝑚(,)𝑛)))
136135ralbidva 3173 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
137129, 136bitrid 283 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
138137adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
1391adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋 ∈ ℝ)
1402adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑌 ∈ ℝ)
1413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋𝑌)
14228adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑍 ∈ ℝ*)
14319adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑊 ∈ ℝ*)
144 nfcv 2902 . . . . . . . . . . . . . 14 𝑦𝐴
145 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴
146 csbeq1a 3921 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
147144, 145, 146cbvmpt 5258 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)
148147, 8eqeltrrid 2843 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
149148adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
150 nfcv 2902 . . . . . . . . . . . . . 14 𝑦𝐵
151 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
152 csbeq1a 3921 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
153150, 151, 152cbvmpt 5258 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵)
154 itgsubst.b . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
155153, 154eqeltrrid 2843 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
156155adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
157 nfcv 2902 . . . . . . . . . . . . . 14 𝑣𝐶
158 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑢𝑣 / 𝑢𝐶
159 csbeq1a 3921 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝐶 = 𝑣 / 𝑢𝐶)
160157, 158, 159cbvmpt 5258 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) = (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶)
161 itgsubst.c . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
162160, 161eqeltrrid 2843 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
163162adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
164 itgsubst.da . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
165147oveq2i 7441 . . . . . . . . . . . . 13 (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
166164, 165, 1533eqtr3g 2797 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
167166adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
168 csbeq1 3910 . . . . . . . . . . 11 (𝑣 = 𝑦 / 𝑥𝐴𝑣 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
169 csbeq1 3910 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
170 csbeq1 3910 . . . . . . . . . . 11 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
171 simprll 779 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑚 ∈ (𝑍(,)𝑊))
172 simprlr 780 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑛 ∈ (𝑍(,)𝑊))
173 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))
174145nfel1 2919 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)
175146eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 ∈ (𝑚(,)𝑛) ↔ 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
176174, 175rspc 3609 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋[,]𝑌) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
177173, 176mpan9 506 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) ∧ 𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛))
178139, 140, 141, 142, 143, 149, 156, 163, 167, 168, 169, 170, 171, 172, 177itgsubstlem 26103 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦)
179159, 157, 158cbvditg 25903 . . . . . . . . . . . 12 ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣
180 nfcvd 2903 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑥𝐾)
181 itgsubst.k . . . . . . . . . . . . . . 15 (𝑥 = 𝑋𝐴 = 𝐾)
182180, 181csbiegf 3941 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → 𝑋 / 𝑥𝐴 = 𝐾)
183 ditgeq1 25897 . . . . . . . . . . . . . 14 (𝑋 / 𝑥𝐴 = 𝐾 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
1841, 182, 1833syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
185 nfcvd 2903 . . . . . . . . . . . . . . 15 (𝑌 ∈ ℝ → 𝑥𝐿)
186 itgsubst.l . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝐴 = 𝐿)
187185, 186csbiegf 3941 . . . . . . . . . . . . . 14 (𝑌 ∈ ℝ → 𝑌 / 𝑥𝐴 = 𝐿)
188 ditgeq2 25898 . . . . . . . . . . . . . 14 (𝑌 / 𝑥𝐴 = 𝐿 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
1892, 187, 1883syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
190184, 189eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
191179, 190eqtr3id 2788 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
192191adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
193146csbeq1d 3911 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
194193, 152oveq12d 7448 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 / 𝑢𝐶 · 𝐵) = (𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵))
195 nfcv 2902 . . . . . . . . . . . . 13 𝑦(𝐴 / 𝑢𝐶 · 𝐵)
196 nfcv 2902 . . . . . . . . . . . . . . 15 𝑥𝐶
197145, 196nfcsbw 3934 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴 / 𝑢𝐶
198 nfcv 2902 . . . . . . . . . . . . . 14 𝑥 ·
199197, 198, 151nfov 7460 . . . . . . . . . . . . 13 𝑥(𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵)
200194, 195, 199cbvditg 25903 . . . . . . . . . . . 12 ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦
201 ioossicc 13469 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
202201sseli 3990 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
203202, 131sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
204 nfcvd 2903 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝑍(,)𝑊) → 𝑢𝐸)
205 itgsubst.e . . . . . . . . . . . . . . . . 17 (𝑢 = 𝐴𝐶 = 𝐸)
206204, 205csbiegf 3941 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝑍(,)𝑊) → 𝐴 / 𝑢𝐶 = 𝐸)
207203, 206syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 / 𝑢𝐶 = 𝐸)
208207oveq1d 7445 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 / 𝑢𝐶 · 𝐵) = (𝐸 · 𝐵))
209208itgeq2dv 25831 . . . . . . . . . . . . 13 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
2103ditgpos 25905 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥)
2113ditgpos 25905 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
212209, 210, 2113eqtr4d 2784 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
213200, 212eqtr3id 2788 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
214213adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
215178, 192, 2143eqtr3d 2782 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
216215expr 456 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
217138, 216sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
218123, 217sylbid 240 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
219111, 218biimtrrid 243 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → ((∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
220219rexlimdvva 3210 . . . 4 (𝜑 → (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
221110, 220biimtrid 242 . . 3 (𝜑 → ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22262, 107, 221syl2and 608 . 2 (𝜑 → ((∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22310, 222mpd 15 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  csb 3907  cin 3961  wss 3962   class class class wbr 5147  cmpt 5230  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151   · cmul 11157  *cxr 11291   < clt 11292  cle 11293  cq 12987  (,)cioo 13383  [,]cicc 13386  cnccncf 24915  𝐿1cibl 25665  citg 25666  cdit 25895   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-ditg 25896  df-limc 25915  df-dv 25916
This theorem is referenced by:  itgsubsticclem  45930
  Copyright terms: Public domain W3C validator