MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Structured version   Visualization version   GIF version

Theorem itgsubst 26110
Description: Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 26109, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x (𝜑𝑋 ∈ ℝ)
itgsubst.y (𝜑𝑌 ∈ ℝ)
itgsubst.le (𝜑𝑋𝑌)
itgsubst.z (𝜑𝑍 ∈ ℝ*)
itgsubst.w (𝜑𝑊 ∈ ℝ*)
itgsubst.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
itgsubst.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubst.c (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
itgsubst.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubst.e (𝑢 = 𝐴𝐶 = 𝐸)
itgsubst.k (𝑥 = 𝑋𝐴 = 𝐾)
itgsubst.l (𝑥 = 𝑌𝐴 = 𝐿)
Assertion
Ref Expression
itgsubst (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐸   𝑥,𝑢,𝐾   𝜑,𝑢,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝑢,𝐴   𝑥,𝐶   𝑢,𝑊,𝑥   𝑢,𝐿,𝑥   𝑢,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubst
Dummy variables 𝑚 𝑛 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3 (𝜑𝑋 ∈ ℝ)
2 itgsubst.y . . 3 (𝜑𝑌 ∈ ℝ)
3 itgsubst.le . . 3 (𝜑𝑋𝑌)
4 ioossre 13468 . . . . 5 (𝑍(,)𝑊) ⊆ ℝ
5 ax-resscn 11241 . . . . 5 ℝ ⊆ ℂ
6 cncfss 24944 . . . . 5 (((𝑍(,)𝑊) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ))
74, 5, 6mp2an 691 . . . 4 ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ)
8 itgsubst.a . . . 4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
97, 8sselid 4006 . . 3 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
101, 2, 3, 9evthicc 25513 . 2 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
11 ressxr 11334 . . . . . . . 8 ℝ ⊆ ℝ*
124, 11sstri 4018 . . . . . . 7 (𝑍(,)𝑊) ⊆ ℝ*
13 cncff 24938 . . . . . . . . . 10 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
148, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
1514adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
16 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑦 ∈ (𝑋[,]𝑌))
1715, 16ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
1812, 17sselid 4006 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
19 itgsubst.w . . . . . . 7 (𝜑𝑊 ∈ ℝ*)
2019adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑊 ∈ ℝ*)
21 eliooord 13466 . . . . . . . 8 (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2217, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2322simprd 495 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
24 qbtwnxr 13262 . . . . . 6 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑊 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
2518, 20, 23, 24syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
26 qre 13018 . . . . . . 7 (𝑛 ∈ ℚ → 𝑛 ∈ ℝ)
2726ad2antrl 727 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
28 itgsubst.z . . . . . . . 8 (𝜑𝑍 ∈ ℝ*)
2928ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 ∈ ℝ*)
3018adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
3127rexrd 11340 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ*)
3222simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
3332adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
34 simprrl 780 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
3529, 30, 31, 33, 34xrlttrd 13221 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < 𝑛)
36 simprrr 781 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 < 𝑊)
3719ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑊 ∈ ℝ*)
38 elioo2 13448 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
3929, 37, 38syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
4027, 35, 36, 39mpbir3and 1342 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ (𝑍(,)𝑊))
41 anass 468 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))))
42 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4342adantr 480 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4414ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
4544ffvelcdmda 7118 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
4612, 45sselid 4006 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
47 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑦 ∈ (𝑋[,]𝑌))
4844, 47ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
4912, 48sselid 4006 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5049adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5126ad2antrl 727 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ)
5352rexrd 11340 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
54 xrlelttr 13218 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑛 ∈ ℝ*) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5546, 50, 53, 54syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5643, 55mpan2d 693 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5756ralimdva 3173 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5857imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
5958an32s 651 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6041, 59sylanbr 581 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6125, 40, 60reximssdv 3179 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6261rexlimdvaa 3162 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
6328adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 ∈ ℝ*)
6414adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
65 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑦 ∈ (𝑋[,]𝑌))
6664, 65ffvelcdmd 7119 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
6712, 66sselid 4006 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
6866, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
6968simpld 494 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
70 qbtwnxr 13262 . . . . . 6 ((𝑍 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
7163, 67, 69, 70syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
72 qre 13018 . . . . . . 7 (𝑚 ∈ ℚ → 𝑚 ∈ ℝ)
7372ad2antrl 727 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
74 simprrl 780 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 < 𝑚)
7573rexrd 11340 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ*)
7667adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
7719ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑊 ∈ ℝ*)
78 simprrr 781 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
7968simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8079adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8175, 76, 77, 78, 80xrlttrd 13221 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < 𝑊)
8228ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 ∈ ℝ*)
83 elioo2 13448 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8482, 77, 83syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8573, 74, 81, 84mpbir3and 1342 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ (𝑍(,)𝑊))
86 anass 468 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))))
87 simprrr 781 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8887adantr 480 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8972ad2antrl 727 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ)
9190rexrd 11340 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
9214ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
93 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑦 ∈ (𝑋[,]𝑌))
9492, 93ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
9512, 94sselid 4006 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9695adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9792ffvelcdmda 7118 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
9812, 97sselid 4006 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
99 xrltletr 13219 . . . . . . . . . . 11 ((𝑚 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10091, 96, 98, 99syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10188, 100mpand 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
102101ralimdva 3173 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
103102imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
104103an32s 651 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10586, 104sylanbr 581 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10671, 85, 105reximssdv 3179 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
107106rexlimdvaa 3162 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
108 ancom 460 . . . . 5 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
109 reeanv 3235 . . . . 5 (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
110108, 109bitr4i 278 . . . 4 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ ∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
111 r19.26 3117 . . . . . 6 (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
11214adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
113112ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
1144, 113sselid 4006 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ)
1151143biant1d 1478 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
116 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ (𝑍(,)𝑊))
11712, 116sselid 4006 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
118 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ (𝑍(,)𝑊))
11912, 118sselid 4006 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
120 elioo2 13448 . . . . . . . . . 10 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
121117, 119, 120syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
122115, 121bitr4d 282 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
123122ralbidva 3182 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
124 nffvmpt1 6931 . . . . . . . . . . . 12 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)
125124nfel1 2925 . . . . . . . . . . 11 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)
126 nfv 1913 . . . . . . . . . . 11 𝑧((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)
127 fveq2 6920 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥))
128127eleq1d 2829 . . . . . . . . . . 11 (𝑧 = 𝑥 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)))
129125, 126, 128cbvralw 3312 . . . . . . . . . 10 (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛))
130 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝑥 ∈ (𝑋[,]𝑌))
13114fvmptelcdm 7147 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
132 eqid 2740 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)
133132fvmpt2 7040 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑋[,]𝑌) ∧ 𝐴 ∈ (𝑍(,)𝑊)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
134130, 131, 133syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
135134eleq1d 2829 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ 𝐴 ∈ (𝑚(,)𝑛)))
136135ralbidva 3182 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
137129, 136bitrid 283 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
138137adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
1391adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋 ∈ ℝ)
1402adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑌 ∈ ℝ)
1413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋𝑌)
14228adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑍 ∈ ℝ*)
14319adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑊 ∈ ℝ*)
144 nfcv 2908 . . . . . . . . . . . . . 14 𝑦𝐴
145 nfcsb1v 3946 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴
146 csbeq1a 3935 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
147144, 145, 146cbvmpt 5277 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)
148147, 8eqeltrrid 2849 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
149148adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
150 nfcv 2908 . . . . . . . . . . . . . 14 𝑦𝐵
151 nfcsb1v 3946 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
152 csbeq1a 3935 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
153150, 151, 152cbvmpt 5277 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵)
154 itgsubst.b . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
155153, 154eqeltrrid 2849 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
156155adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
157 nfcv 2908 . . . . . . . . . . . . . 14 𝑣𝐶
158 nfcsb1v 3946 . . . . . . . . . . . . . 14 𝑢𝑣 / 𝑢𝐶
159 csbeq1a 3935 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝐶 = 𝑣 / 𝑢𝐶)
160157, 158, 159cbvmpt 5277 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) = (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶)
161 itgsubst.c . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
162160, 161eqeltrrid 2849 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
163162adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
164 itgsubst.da . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
165147oveq2i 7459 . . . . . . . . . . . . 13 (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
166164, 165, 1533eqtr3g 2803 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
167166adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
168 csbeq1 3924 . . . . . . . . . . 11 (𝑣 = 𝑦 / 𝑥𝐴𝑣 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
169 csbeq1 3924 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
170 csbeq1 3924 . . . . . . . . . . 11 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
171 simprll 778 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑚 ∈ (𝑍(,)𝑊))
172 simprlr 779 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑛 ∈ (𝑍(,)𝑊))
173 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))
174145nfel1 2925 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)
175146eleq1d 2829 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 ∈ (𝑚(,)𝑛) ↔ 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
176174, 175rspc 3623 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋[,]𝑌) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
177173, 176mpan9 506 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) ∧ 𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛))
178139, 140, 141, 142, 143, 149, 156, 163, 167, 168, 169, 170, 171, 172, 177itgsubstlem 26109 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦)
179159, 157, 158cbvditg 25909 . . . . . . . . . . . 12 ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣
180 nfcvd 2909 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑥𝐾)
181 itgsubst.k . . . . . . . . . . . . . . 15 (𝑥 = 𝑋𝐴 = 𝐾)
182180, 181csbiegf 3955 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → 𝑋 / 𝑥𝐴 = 𝐾)
183 ditgeq1 25903 . . . . . . . . . . . . . 14 (𝑋 / 𝑥𝐴 = 𝐾 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
1841, 182, 1833syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
185 nfcvd 2909 . . . . . . . . . . . . . . 15 (𝑌 ∈ ℝ → 𝑥𝐿)
186 itgsubst.l . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝐴 = 𝐿)
187185, 186csbiegf 3955 . . . . . . . . . . . . . 14 (𝑌 ∈ ℝ → 𝑌 / 𝑥𝐴 = 𝐿)
188 ditgeq2 25904 . . . . . . . . . . . . . 14 (𝑌 / 𝑥𝐴 = 𝐿 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
1892, 187, 1883syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
190184, 189eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
191179, 190eqtr3id 2794 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
192191adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
193146csbeq1d 3925 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
194193, 152oveq12d 7466 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 / 𝑢𝐶 · 𝐵) = (𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵))
195 nfcv 2908 . . . . . . . . . . . . 13 𝑦(𝐴 / 𝑢𝐶 · 𝐵)
196 nfcv 2908 . . . . . . . . . . . . . . 15 𝑥𝐶
197145, 196nfcsbw 3948 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴 / 𝑢𝐶
198 nfcv 2908 . . . . . . . . . . . . . 14 𝑥 ·
199197, 198, 151nfov 7478 . . . . . . . . . . . . 13 𝑥(𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵)
200194, 195, 199cbvditg 25909 . . . . . . . . . . . 12 ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦
201 ioossicc 13493 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
202201sseli 4004 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
203202, 131sylan2 592 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
204 nfcvd 2909 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝑍(,)𝑊) → 𝑢𝐸)
205 itgsubst.e . . . . . . . . . . . . . . . . 17 (𝑢 = 𝐴𝐶 = 𝐸)
206204, 205csbiegf 3955 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝑍(,)𝑊) → 𝐴 / 𝑢𝐶 = 𝐸)
207203, 206syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 / 𝑢𝐶 = 𝐸)
208207oveq1d 7463 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 / 𝑢𝐶 · 𝐵) = (𝐸 · 𝐵))
209208itgeq2dv 25837 . . . . . . . . . . . . 13 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
2103ditgpos 25911 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥)
2113ditgpos 25911 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
212209, 210, 2113eqtr4d 2790 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
213200, 212eqtr3id 2794 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
214213adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
215178, 192, 2143eqtr3d 2788 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
216215expr 456 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
217138, 216sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
218123, 217sylbid 240 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
219111, 218biimtrrid 243 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → ((∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
220219rexlimdvva 3219 . . . 4 (𝜑 → (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
221110, 220biimtrid 242 . . 3 (𝜑 → ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22262, 107, 221syl2and 607 . 2 (𝜑 → ((∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22310, 222mpd 15 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  csb 3921  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cq 13013  (,)cioo 13407  [,]cicc 13410  cnccncf 24921  𝐿1cibl 25671  citg 25672  cdit 25901   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-ditg 25902  df-limc 25921  df-dv 25922
This theorem is referenced by:  itgsubsticclem  45896
  Copyright terms: Public domain W3C validator