MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Structured version   Visualization version   GIF version

Theorem itgsubst 26090
Description: Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 26089, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x (𝜑𝑋 ∈ ℝ)
itgsubst.y (𝜑𝑌 ∈ ℝ)
itgsubst.le (𝜑𝑋𝑌)
itgsubst.z (𝜑𝑍 ∈ ℝ*)
itgsubst.w (𝜑𝑊 ∈ ℝ*)
itgsubst.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
itgsubst.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubst.c (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
itgsubst.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubst.e (𝑢 = 𝐴𝐶 = 𝐸)
itgsubst.k (𝑥 = 𝑋𝐴 = 𝐾)
itgsubst.l (𝑥 = 𝑌𝐴 = 𝐿)
Assertion
Ref Expression
itgsubst (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐸   𝑥,𝑢,𝐾   𝜑,𝑢,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝑢,𝐴   𝑥,𝐶   𝑢,𝑊,𝑥   𝑢,𝐿,𝑥   𝑢,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubst
Dummy variables 𝑚 𝑛 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3 (𝜑𝑋 ∈ ℝ)
2 itgsubst.y . . 3 (𝜑𝑌 ∈ ℝ)
3 itgsubst.le . . 3 (𝜑𝑋𝑌)
4 ioossre 13448 . . . . 5 (𝑍(,)𝑊) ⊆ ℝ
5 ax-resscn 11212 . . . . 5 ℝ ⊆ ℂ
6 cncfss 24925 . . . . 5 (((𝑍(,)𝑊) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ))
74, 5, 6mp2an 692 . . . 4 ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ)
8 itgsubst.a . . . 4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
97, 8sselid 3981 . . 3 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
101, 2, 3, 9evthicc 25494 . 2 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
11 ressxr 11305 . . . . . . . 8 ℝ ⊆ ℝ*
124, 11sstri 3993 . . . . . . 7 (𝑍(,)𝑊) ⊆ ℝ*
13 cncff 24919 . . . . . . . . . 10 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
148, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
1514adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
16 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑦 ∈ (𝑋[,]𝑌))
1715, 16ffvelcdmd 7105 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
1812, 17sselid 3981 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
19 itgsubst.w . . . . . . 7 (𝜑𝑊 ∈ ℝ*)
2019adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑊 ∈ ℝ*)
21 eliooord 13446 . . . . . . . 8 (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2217, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2322simprd 495 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
24 qbtwnxr 13242 . . . . . 6 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑊 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
2518, 20, 23, 24syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
26 qre 12995 . . . . . . 7 (𝑛 ∈ ℚ → 𝑛 ∈ ℝ)
2726ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
28 itgsubst.z . . . . . . . 8 (𝜑𝑍 ∈ ℝ*)
2928ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 ∈ ℝ*)
3018adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
3127rexrd 11311 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ*)
3222simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
3332adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
34 simprrl 781 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
3529, 30, 31, 33, 34xrlttrd 13201 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < 𝑛)
36 simprrr 782 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 < 𝑊)
3719ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑊 ∈ ℝ*)
38 elioo2 13428 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
3929, 37, 38syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
4027, 35, 36, 39mpbir3and 1343 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ (𝑍(,)𝑊))
41 anass 468 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))))
42 simprrl 781 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4342adantr 480 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4414ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
4544ffvelcdmda 7104 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
4612, 45sselid 3981 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
47 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑦 ∈ (𝑋[,]𝑌))
4844, 47ffvelcdmd 7105 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
4912, 48sselid 3981 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5049adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5126ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
5251adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ)
5352rexrd 11311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
54 xrlelttr 13198 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑛 ∈ ℝ*) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5546, 50, 53, 54syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5643, 55mpan2d 694 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5756ralimdva 3167 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5857imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
5958an32s 652 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6041, 59sylanbr 582 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6125, 40, 60reximssdv 3173 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6261rexlimdvaa 3156 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
6328adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 ∈ ℝ*)
6414adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
65 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑦 ∈ (𝑋[,]𝑌))
6664, 65ffvelcdmd 7105 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
6712, 66sselid 3981 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
6866, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
6968simpld 494 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
70 qbtwnxr 13242 . . . . . 6 ((𝑍 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
7163, 67, 69, 70syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
72 qre 12995 . . . . . . 7 (𝑚 ∈ ℚ → 𝑚 ∈ ℝ)
7372ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
74 simprrl 781 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 < 𝑚)
7573rexrd 11311 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ*)
7667adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
7719ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑊 ∈ ℝ*)
78 simprrr 782 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
7968simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8079adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8175, 76, 77, 78, 80xrlttrd 13201 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < 𝑊)
8228ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 ∈ ℝ*)
83 elioo2 13428 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8482, 77, 83syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8573, 74, 81, 84mpbir3and 1343 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ (𝑍(,)𝑊))
86 anass 468 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))))
87 simprrr 782 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8887adantr 480 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8972ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ)
9190rexrd 11311 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
9214ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
93 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑦 ∈ (𝑋[,]𝑌))
9492, 93ffvelcdmd 7105 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
9512, 94sselid 3981 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9695adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9792ffvelcdmda 7104 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
9812, 97sselid 3981 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
99 xrltletr 13199 . . . . . . . . . . 11 ((𝑚 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10091, 96, 98, 99syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10188, 100mpand 695 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
102101ralimdva 3167 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
103102imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
104103an32s 652 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10586, 104sylanbr 582 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10671, 85, 105reximssdv 3173 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
107106rexlimdvaa 3156 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
108 ancom 460 . . . . 5 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
109 reeanv 3229 . . . . 5 (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
110108, 109bitr4i 278 . . . 4 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ ∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
111 r19.26 3111 . . . . . 6 (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
11214adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
113112ffvelcdmda 7104 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
1144, 113sselid 3981 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ)
1151143biant1d 1480 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
116 simplrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ (𝑍(,)𝑊))
11712, 116sselid 3981 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
118 simplrr 778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ (𝑍(,)𝑊))
11912, 118sselid 3981 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
120 elioo2 13428 . . . . . . . . . 10 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
121117, 119, 120syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
122115, 121bitr4d 282 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
123122ralbidva 3176 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
124 nffvmpt1 6917 . . . . . . . . . . . 12 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)
125124nfel1 2922 . . . . . . . . . . 11 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)
126 nfv 1914 . . . . . . . . . . 11 𝑧((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)
127 fveq2 6906 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥))
128127eleq1d 2826 . . . . . . . . . . 11 (𝑧 = 𝑥 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)))
129125, 126, 128cbvralw 3306 . . . . . . . . . 10 (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛))
130 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝑥 ∈ (𝑋[,]𝑌))
13114fvmptelcdm 7133 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
132 eqid 2737 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)
133132fvmpt2 7027 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑋[,]𝑌) ∧ 𝐴 ∈ (𝑍(,)𝑊)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
134130, 131, 133syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
135134eleq1d 2826 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ 𝐴 ∈ (𝑚(,)𝑛)))
136135ralbidva 3176 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
137129, 136bitrid 283 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
138137adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
1391adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋 ∈ ℝ)
1402adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑌 ∈ ℝ)
1413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋𝑌)
14228adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑍 ∈ ℝ*)
14319adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑊 ∈ ℝ*)
144 nfcv 2905 . . . . . . . . . . . . . 14 𝑦𝐴
145 nfcsb1v 3923 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴
146 csbeq1a 3913 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
147144, 145, 146cbvmpt 5253 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)
148147, 8eqeltrrid 2846 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
149148adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
150 nfcv 2905 . . . . . . . . . . . . . 14 𝑦𝐵
151 nfcsb1v 3923 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
152 csbeq1a 3913 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
153150, 151, 152cbvmpt 5253 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵)
154 itgsubst.b . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
155153, 154eqeltrrid 2846 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
156155adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
157 nfcv 2905 . . . . . . . . . . . . . 14 𝑣𝐶
158 nfcsb1v 3923 . . . . . . . . . . . . . 14 𝑢𝑣 / 𝑢𝐶
159 csbeq1a 3913 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝐶 = 𝑣 / 𝑢𝐶)
160157, 158, 159cbvmpt 5253 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) = (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶)
161 itgsubst.c . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
162160, 161eqeltrrid 2846 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
163162adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
164 itgsubst.da . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
165147oveq2i 7442 . . . . . . . . . . . . 13 (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
166164, 165, 1533eqtr3g 2800 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
167166adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
168 csbeq1 3902 . . . . . . . . . . 11 (𝑣 = 𝑦 / 𝑥𝐴𝑣 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
169 csbeq1 3902 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
170 csbeq1 3902 . . . . . . . . . . 11 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
171 simprll 779 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑚 ∈ (𝑍(,)𝑊))
172 simprlr 780 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑛 ∈ (𝑍(,)𝑊))
173 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))
174145nfel1 2922 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)
175146eleq1d 2826 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 ∈ (𝑚(,)𝑛) ↔ 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
176174, 175rspc 3610 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋[,]𝑌) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
177173, 176mpan9 506 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) ∧ 𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛))
178139, 140, 141, 142, 143, 149, 156, 163, 167, 168, 169, 170, 171, 172, 177itgsubstlem 26089 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦)
179159, 157, 158cbvditg 25889 . . . . . . . . . . . 12 ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣
180 nfcvd 2906 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑥𝐾)
181 itgsubst.k . . . . . . . . . . . . . . 15 (𝑥 = 𝑋𝐴 = 𝐾)
182180, 181csbiegf 3932 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → 𝑋 / 𝑥𝐴 = 𝐾)
183 ditgeq1 25883 . . . . . . . . . . . . . 14 (𝑋 / 𝑥𝐴 = 𝐾 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
1841, 182, 1833syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
185 nfcvd 2906 . . . . . . . . . . . . . . 15 (𝑌 ∈ ℝ → 𝑥𝐿)
186 itgsubst.l . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝐴 = 𝐿)
187185, 186csbiegf 3932 . . . . . . . . . . . . . 14 (𝑌 ∈ ℝ → 𝑌 / 𝑥𝐴 = 𝐿)
188 ditgeq2 25884 . . . . . . . . . . . . . 14 (𝑌 / 𝑥𝐴 = 𝐿 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
1892, 187, 1883syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
190184, 189eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
191179, 190eqtr3id 2791 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
192191adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
193146csbeq1d 3903 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
194193, 152oveq12d 7449 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 / 𝑢𝐶 · 𝐵) = (𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵))
195 nfcv 2905 . . . . . . . . . . . . 13 𝑦(𝐴 / 𝑢𝐶 · 𝐵)
196 nfcv 2905 . . . . . . . . . . . . . . 15 𝑥𝐶
197145, 196nfcsbw 3925 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴 / 𝑢𝐶
198 nfcv 2905 . . . . . . . . . . . . . 14 𝑥 ·
199197, 198, 151nfov 7461 . . . . . . . . . . . . 13 𝑥(𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵)
200194, 195, 199cbvditg 25889 . . . . . . . . . . . 12 ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦
201 ioossicc 13473 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
202201sseli 3979 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
203202, 131sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
204 nfcvd 2906 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝑍(,)𝑊) → 𝑢𝐸)
205 itgsubst.e . . . . . . . . . . . . . . . . 17 (𝑢 = 𝐴𝐶 = 𝐸)
206204, 205csbiegf 3932 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝑍(,)𝑊) → 𝐴 / 𝑢𝐶 = 𝐸)
207203, 206syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 / 𝑢𝐶 = 𝐸)
208207oveq1d 7446 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 / 𝑢𝐶 · 𝐵) = (𝐸 · 𝐵))
209208itgeq2dv 25817 . . . . . . . . . . . . 13 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
2103ditgpos 25891 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥)
2113ditgpos 25891 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
212209, 210, 2113eqtr4d 2787 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
213200, 212eqtr3id 2791 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
214213adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
215178, 192, 2143eqtr3d 2785 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
216215expr 456 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
217138, 216sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
218123, 217sylbid 240 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
219111, 218biimtrrid 243 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → ((∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
220219rexlimdvva 3213 . . . 4 (𝜑 → (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
221110, 220biimtrid 242 . . 3 (𝜑 → ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22262, 107, 221syl2and 608 . 2 (𝜑 → ((∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22310, 222mpd 15 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  csb 3899  cin 3950  wss 3951   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cq 12990  (,)cioo 13387  [,]cicc 13390  cnccncf 24902  𝐿1cibl 25652  citg 25653  cdit 25881   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-ditg 25882  df-limc 25901  df-dv 25902
This theorem is referenced by:  itgsubsticclem  45990
  Copyright terms: Public domain W3C validator