MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsubst Structured version   Visualization version   GIF version

Theorem itgsubst 24646
Description: Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 24645, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
itgsubst.x (𝜑𝑋 ∈ ℝ)
itgsubst.y (𝜑𝑌 ∈ ℝ)
itgsubst.le (𝜑𝑋𝑌)
itgsubst.z (𝜑𝑍 ∈ ℝ*)
itgsubst.w (𝜑𝑊 ∈ ℝ*)
itgsubst.a (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
itgsubst.b (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubst.c (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
itgsubst.da (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubst.e (𝑢 = 𝐴𝐶 = 𝐸)
itgsubst.k (𝑥 = 𝑋𝐴 = 𝐾)
itgsubst.l (𝑥 = 𝑌𝐴 = 𝐿)
Assertion
Ref Expression
itgsubst (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐸   𝑥,𝑢,𝐾   𝜑,𝑢,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝑢,𝐴   𝑥,𝐶   𝑢,𝑊,𝑥   𝑢,𝐿,𝑥   𝑢,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubst
Dummy variables 𝑚 𝑛 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgsubst.x . . 3 (𝜑𝑋 ∈ ℝ)
2 itgsubst.y . . 3 (𝜑𝑌 ∈ ℝ)
3 itgsubst.le . . 3 (𝜑𝑋𝑌)
4 ioossre 12799 . . . . 5 (𝑍(,)𝑊) ⊆ ℝ
5 ax-resscn 10594 . . . . 5 ℝ ⊆ ℂ
6 cncfss 23507 . . . . 5 (((𝑍(,)𝑊) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ))
74, 5, 6mp2an 690 . . . 4 ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) ⊆ ((𝑋[,]𝑌)–cn→ℝ)
8 itgsubst.a . . . 4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
97, 8sseldi 3965 . . 3 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
101, 2, 3, 9evthicc 24060 . 2 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
11 ressxr 10685 . . . . . . . 8 ℝ ⊆ ℝ*
124, 11sstri 3976 . . . . . . 7 (𝑍(,)𝑊) ⊆ ℝ*
13 cncff 23501 . . . . . . . . . 10 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
148, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
1514adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
16 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑦 ∈ (𝑋[,]𝑌))
1715, 16ffvelrnd 6852 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
1812, 17sseldi 3965 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
19 itgsubst.w . . . . . . 7 (𝜑𝑊 ∈ ℝ*)
2019adantr 483 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑊 ∈ ℝ*)
21 eliooord 12797 . . . . . . . 8 (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2217, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
2322simprd 498 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
24 qbtwnxr 12594 . . . . . 6 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑊 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
2518, 20, 23, 24syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ ℚ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))
26 qre 12354 . . . . . . 7 (𝑛 ∈ ℚ → 𝑛 ∈ ℝ)
2726ad2antrl 726 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
28 itgsubst.z . . . . . . . 8 (𝜑𝑍 ∈ ℝ*)
2928ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 ∈ ℝ*)
3018adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
3127rexrd 10691 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ*)
3222simpld 497 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
3332adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
34 simprrl 779 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
3529, 30, 31, 33, 34xrlttrd 12553 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑍 < 𝑛)
36 simprrr 780 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 < 𝑊)
3719ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑊 ∈ ℝ*)
38 elioo2 12780 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
3929, 37, 38syl2anc 586 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑛 ∈ (𝑍(,)𝑊) ↔ (𝑛 ∈ ℝ ∧ 𝑍 < 𝑛𝑛 < 𝑊)))
4027, 35, 36, 39mpbir3and 1338 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ (𝑍(,)𝑊))
41 anass 471 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))))
42 simprrl 779 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4342adantr 483 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛)
4414ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
4544ffvelrnda 6851 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
4612, 45sseldi 3965 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
47 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑦 ∈ (𝑋[,]𝑌))
4844, 47ffvelrnd 6852 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
4912, 48sseldi 3965 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5049adantr 483 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
5126ad2antrl 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → 𝑛 ∈ ℝ)
5251adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ)
5352rexrd 10691 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
54 xrlelttr 12550 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑛 ∈ ℝ*) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5546, 50, 53, 54syl3anc 1367 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5643, 55mpan2d 692 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5756ralimdva 3177 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
5857imp 409 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
5958an32s 650 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6041, 59sylanbr 584 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) ∧ (𝑛 ∈ ℚ ∧ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑛𝑛 < 𝑊))) → ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6125, 40, 60reximssdv 3276 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)
6261rexlimdvaa 3285 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) → ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
6328adantr 483 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 ∈ ℝ*)
6414adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
65 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑦 ∈ (𝑋[,]𝑌))
6664, 65ffvelrnd 6852 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
6712, 66sseldi 3965 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
6866, 21syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → (𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊))
6968simpld 497 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → 𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
70 qbtwnxr 12594 . . . . . 6 ((𝑍 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*𝑍 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
7163, 67, 69, 70syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ ℚ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))
72 qre 12354 . . . . . . 7 (𝑚 ∈ ℚ → 𝑚 ∈ ℝ)
7372ad2antrl 726 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
74 simprrl 779 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 < 𝑚)
7573rexrd 10691 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ*)
7667adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
7719ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑊 ∈ ℝ*)
78 simprrr 780 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
7968simprd 498 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8079adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) < 𝑊)
8175, 76, 77, 78, 80xrlttrd 12553 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < 𝑊)
8228ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑍 ∈ ℝ*)
83 elioo2 12780 . . . . . . 7 ((𝑍 ∈ ℝ*𝑊 ∈ ℝ*) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8482, 77, 83syl2anc 586 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑚 ∈ (𝑍(,)𝑊) ↔ (𝑚 ∈ ℝ ∧ 𝑍 < 𝑚𝑚 < 𝑊)))
8573, 74, 81, 84mpbir3and 1338 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ (𝑍(,)𝑊))
86 anass 471 . . . . . 6 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))))
87 simprrr 780 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8887adantr 483 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦))
8972ad2antrl 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑚 ∈ ℝ)
9089adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ)
9190rexrd 10691 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
9214ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
93 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → 𝑦 ∈ (𝑋[,]𝑌))
9492, 93ffvelrnd 6852 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ (𝑍(,)𝑊))
9512, 94sseldi 3965 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9695adantr 483 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ*)
9792ffvelrnda 6851 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
9812, 97sseldi 3965 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*)
99 xrltletr 12551 . . . . . . . . . . 11 ((𝑚 ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∈ ℝ* ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ*) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10091, 96, 98, 99syl3anc 1367 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
10188, 100mpand 693 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
102101ralimdva 3177 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
103102imp 409 . . . . . . 7 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
104103an32s 650 . . . . . 6 ((((𝜑𝑦 ∈ (𝑋[,]𝑌)) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10586, 104sylanbr 584 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) ∧ (𝑚 ∈ ℚ ∧ (𝑍 < 𝑚𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦)))) → ∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
10671, 85, 105reximssdv 3276 . . . 4 ((𝜑 ∧ (𝑦 ∈ (𝑋[,]𝑌) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧))
107106rexlimdvaa 3285 . . 3 (𝜑 → (∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) → ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)))
108 ancom 463 . . . . 5 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
109 reeanv 3367 . . . . 5 (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
110108, 109bitr4i 280 . . . 4 ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) ↔ ∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
111 r19.26 3170 . . . . . 6 (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛))
11214adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝑍(,)𝑊))
113112ffvelrnda 6851 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑍(,)𝑊))
1144, 113sseldi 3965 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ)
1151143biant1d 1474 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
116 simplrl 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ (𝑍(,)𝑊))
11712, 116sseldi 3965 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑚 ∈ ℝ*)
118 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ (𝑍(,)𝑊))
11912, 118sseldi 3965 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → 𝑛 ∈ ℝ*)
120 elioo2 12780 . . . . . . . . . 10 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
121117, 119, 120syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ ℝ ∧ 𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛)))
122115, 121bitr4d 284 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) ∧ 𝑧 ∈ (𝑋[,]𝑌)) → ((𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
123122ralbidva 3196 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) ↔ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)))
124 nffvmpt1 6681 . . . . . . . . . . . 12 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)
125124nfel1 2994 . . . . . . . . . . 11 𝑥((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛)
126 nfv 1915 . . . . . . . . . . 11 𝑧((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)
127 fveq2 6670 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) = ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥))
128127eleq1d 2897 . . . . . . . . . . 11 (𝑧 = 𝑥 → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛)))
129125, 126, 128cbvralw 3441 . . . . . . . . . 10 (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛))
130 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝑥 ∈ (𝑋[,]𝑌))
13114fvmptelrn 6877 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
132 eqid 2821 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)
133132fvmpt2 6779 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑋[,]𝑌) ∧ 𝐴 ∈ (𝑍(,)𝑊)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
134130, 131, 133syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) = 𝐴)
135134eleq1d 2897 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋[,]𝑌)) → (((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ 𝐴 ∈ (𝑚(,)𝑛)))
136135ralbidva 3196 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑥) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
137129, 136syl5bb 285 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
138137adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) ↔ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛)))
1391adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋 ∈ ℝ)
1402adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑌 ∈ ℝ)
1413adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑋𝑌)
14228adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑍 ∈ ℝ*)
14319adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑊 ∈ ℝ*)
144 nfcv 2977 . . . . . . . . . . . . . 14 𝑦𝐴
145 nfcsb1v 3907 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴
146 csbeq1a 3897 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
147144, 145, 146cbvmpt 5167 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)
148147, 8eqeltrrid 2918 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
149148adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊)))
150 nfcv 2977 . . . . . . . . . . . . . 14 𝑦𝐵
151 nfcsb1v 3907 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
152 csbeq1a 3897 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
153150, 151, 152cbvmpt 5167 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵)
154 itgsubst.b . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
155153, 154eqeltrrid 2918 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
156155adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
157 nfcv 2977 . . . . . . . . . . . . . 14 𝑣𝐶
158 nfcsb1v 3907 . . . . . . . . . . . . . 14 𝑢𝑣 / 𝑢𝐶
159 csbeq1a 3897 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝐶 = 𝑣 / 𝑢𝐶)
160157, 158, 159cbvmpt 5167 . . . . . . . . . . . . 13 (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) = (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶)
161 itgsubst.c . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
162160, 161eqeltrrid 2918 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
163162adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (𝑣 ∈ (𝑍(,)𝑊) ↦ 𝑣 / 𝑢𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ))
164 itgsubst.da . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
165147oveq2i 7167 . . . . . . . . . . . . 13 (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
166164, 165, 1533eqtr3g 2879 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
167166adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → (ℝ D (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
168 csbeq1 3886 . . . . . . . . . . 11 (𝑣 = 𝑦 / 𝑥𝐴𝑣 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
169 csbeq1 3886 . . . . . . . . . . 11 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
170 csbeq1 3886 . . . . . . . . . . 11 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
171 simprll 777 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑚 ∈ (𝑍(,)𝑊))
172 simprlr 778 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → 𝑛 ∈ (𝑍(,)𝑊))
173 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))
174145nfel1 2994 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)
175146eleq1d 2897 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 ∈ (𝑚(,)𝑛) ↔ 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
176174, 175rspc 3611 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋[,]𝑌) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛)))
177173, 176mpan9 509 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) ∧ 𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐴 ∈ (𝑚(,)𝑛))
178139, 140, 141, 142, 143, 149, 156, 163, 167, 168, 169, 170, 171, 172, 177itgsubstlem 24645 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦)
179159, 157, 158cbvditg 24452 . . . . . . . . . . . 12 ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣
180 nfcvd 2978 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑥𝐾)
181 itgsubst.k . . . . . . . . . . . . . . 15 (𝑥 = 𝑋𝐴 = 𝐾)
182180, 181csbiegf 3916 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → 𝑋 / 𝑥𝐴 = 𝐾)
183 ditgeq1 24446 . . . . . . . . . . . . . 14 (𝑋 / 𝑥𝐴 = 𝐾 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
1841, 182, 1833syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢)
185 nfcvd 2978 . . . . . . . . . . . . . . 15 (𝑌 ∈ ℝ → 𝑥𝐿)
186 itgsubst.l . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝐴 = 𝐿)
187185, 186csbiegf 3916 . . . . . . . . . . . . . 14 (𝑌 ∈ ℝ → 𝑌 / 𝑥𝐴 = 𝐿)
188 ditgeq2 24447 . . . . . . . . . . . . . 14 (𝑌 / 𝑥𝐴 = 𝐿 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
1892, 187, 1883syl 18 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝐾𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
190184, 189eqtrd 2856 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝐶 d𝑢 = ⨜[𝐾𝐿]𝐶 d𝑢)
191179, 190syl5eqr 2870 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
192191adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋 / 𝑥𝐴𝑌 / 𝑥𝐴]𝑣 / 𝑢𝐶 d𝑣 = ⨜[𝐾𝐿]𝐶 d𝑢)
193146csbeq1d 3887 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐴 / 𝑢𝐶 = 𝑦 / 𝑥𝐴 / 𝑢𝐶)
194193, 152oveq12d 7174 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐴 / 𝑢𝐶 · 𝐵) = (𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵))
195 nfcv 2977 . . . . . . . . . . . . 13 𝑦(𝐴 / 𝑢𝐶 · 𝐵)
196 nfcv 2977 . . . . . . . . . . . . . . 15 𝑥𝐶
197145, 196nfcsbw 3909 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐴 / 𝑢𝐶
198 nfcv 2977 . . . . . . . . . . . . . 14 𝑥 ·
199197, 198, 151nfov 7186 . . . . . . . . . . . . 13 𝑥(𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵)
200194, 195, 199cbvditg 24452 . . . . . . . . . . . 12 ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦
201 ioossicc 12823 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
202201sseli 3963 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ (𝑋[,]𝑌))
203202, 131sylan2 594 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 ∈ (𝑍(,)𝑊))
204 nfcvd 2978 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (𝑍(,)𝑊) → 𝑢𝐸)
205 itgsubst.e . . . . . . . . . . . . . . . . 17 (𝑢 = 𝐴𝐶 = 𝐸)
206204, 205csbiegf 3916 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝑍(,)𝑊) → 𝐴 / 𝑢𝐶 = 𝐸)
207203, 206syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐴 / 𝑢𝐶 = 𝐸)
208207oveq1d 7171 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → (𝐴 / 𝑢𝐶 · 𝐵) = (𝐸 · 𝐵))
209208itgeq2dv 24382 . . . . . . . . . . . . 13 (𝜑 → ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
2103ditgpos 24454 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐴 / 𝑢𝐶 · 𝐵) d𝑥)
2113ditgpos 24454 . . . . . . . . . . . . 13 (𝜑 → ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥 = ∫(𝑋(,)𝑌)(𝐸 · 𝐵) d𝑥)
212209, 210, 2113eqtr4d 2866 . . . . . . . . . . . 12 (𝜑 → ⨜[𝑋𝑌](𝐴 / 𝑢𝐶 · 𝐵) d𝑥 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
213200, 212syl5eqr 2870 . . . . . . . . . . 11 (𝜑 → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
214213adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝑋𝑌](𝑦 / 𝑥𝐴 / 𝑢𝐶 · 𝑦 / 𝑥𝐵) d𝑦 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
215178, 192, 2143eqtr3d 2864 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊)) ∧ ∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛))) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
216215expr 459 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑥 ∈ (𝑋[,]𝑌)𝐴 ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
217138, 216sylbid 242 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∈ (𝑚(,)𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
218123, 217sylbid 242 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → (∀𝑧 ∈ (𝑋[,]𝑌)(𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
219111, 218syl5bir 245 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑍(,)𝑊) ∧ 𝑛 ∈ (𝑍(,)𝑊))) → ((∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
220219rexlimdvva 3294 . . . 4 (𝜑 → (∃𝑚 ∈ (𝑍(,)𝑊)∃𝑛 ∈ (𝑍(,)𝑊)(∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ∧ ∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
221110, 220syl5bi 244 . . 3 (𝜑 → ((∃𝑛 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) < 𝑛 ∧ ∃𝑚 ∈ (𝑍(,)𝑊)∀𝑧 ∈ (𝑋[,]𝑌)𝑚 < ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22262, 107, 221syl2and 609 . 2 (𝜑 → ((∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ∧ ∃𝑦 ∈ (𝑋[,]𝑌)∀𝑧 ∈ (𝑋[,]𝑌)((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑦) ≤ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑧)) → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥))
22310, 222mpd 15 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  csb 3883  cin 3935  wss 3936   class class class wbr 5066  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cq 12349  (,)cioo 12739  [,]cicc 12742  cnccncf 23484  𝐿1cibl 24218  citg 24219  cdit 24444   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-ditg 24445  df-limc 24464  df-dv 24465
This theorem is referenced by:  itgsubsticclem  42280
  Copyright terms: Public domain W3C validator