![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ifptru 1074 cad1 1613 raldifeq 4499 rexreusng 4683 posn 5773 dmxp 5941 elrnmpt1 5973 dfres3 6004 opelres 6005 ffrnbd 6751 fliftf 7334 eroveu 8850 ixpfi2 9387 elfi2 9451 dffi3 9468 cfss 10302 wunex2 10775 nnle1eq1 12293 nn0le0eq0 12551 ixxun 13399 ioopos 13460 injresinj 13823 hashle00 14435 prprrab 14508 xpcogend 15009 cnpart 15275 fz1f1o 15742 nndivdvds 16295 dvdsmultr2 16331 bitsmod 16469 sadadd 16500 sadass 16504 smuval2 16515 smumul 16526 pcmpt 16925 pcmpt2 16926 prmreclem2 16950 prmreclem5 16953 ramcl 17062 mrcidb2 17662 acsfn 17703 fncnvimaeqv 18174 latleeqj1 18508 resmndismnd 18833 pgpssslw 19646 subgdmdprd 20068 resrhm2b 20618 acsfn1p 20816 lssle0 20965 islpir2 21357 islinds3 21871 iscld4 23088 cncnpi 23301 cnprest2 23313 lmss 23321 isconn2 23437 dfconn2 23442 subislly 23504 lly1stc 23519 elptr 23596 txcn 23649 xkoinjcn 23710 tsmsres 24167 isxmet2d 24352 xmetgt0 24383 prdsxmetlem 24393 imasdsf1olem 24398 xblss2 24427 stdbdbl 24545 prdsxmslem2 24557 xrtgioo 24841 xrsxmet 24844 cnmpopc 24968 elpi1i 25092 minveclem7 25482 elovolmr 25524 ismbf 25676 mbfmax 25697 itg1val2 25732 mbfi1fseqlem4 25767 itgresr 25828 iblrelem 25840 iblpos 25842 rlimcnp 27022 rlimcnp2 27023 chpchtsum 27277 lgsneg 27379 lgsdilem 27382 2lgslem1a 27449 eqscut2 27865 n0subs 28374 lmiinv 28814 isspthonpth 29781 s3wwlks2on 29985 clwlkclwwlk 30030 clwwlknonel 30123 clwwlknun 30140 eupth2lem2 30247 frgr3vlem2 30302 numclwwlk2lem1 30404 nrt2irr 30501 minvecolem7 30911 shle0 31470 mdsl2bi 32351 dmdbr5ati 32450 cdj3lem1 32462 qsfld 33505 eulerpartlemr 34355 subfacp1lem3 35166 satefvfmla1 35409 hfext 36164 bj-issetwt 36857 poimirlem25 37631 poimirlem26 37632 poimirlem27 37633 mblfinlem3 37645 mblfinlem4 37646 mbfresfi 37652 itg2addnclem 37657 itg2addnc 37660 heiborlem10 37806 relssinxpdmrn 38330 dffunsALTV2 38665 dffunsALTV3 38666 dffunsALTV4 38667 elfunsALTV2 38674 elfunsALTV3 38675 elfunsALTV4 38676 elfunsALTV5 38677 dfdisjs2 38690 dfdisjs5 38693 eldisjs2 38704 ople0 39168 atlle0 39286 cdlemg10c 40621 cdlemg33c 40690 hdmap14lem13 41862 mrefg3 42695 onsupneqmaxlim0 43212 onsupnmax 43216 radcnvrat 44309 2ffzoeq 47276 |
Copyright terms: Public domain | W3C validator |