| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ifptru 1074 cad1 1618 raldifeq 4444 rexreusng 4632 posn 5702 dmxp 5869 elrnmpt1 5900 dfres3 5933 opelres 5934 ffrnbd 6666 fliftf 7249 eroveu 8736 ixpfi2 9234 elfi2 9298 dffi3 9315 cfss 10153 wunex2 10626 nnle1eq1 12152 nn0le0eq0 12406 ixxun 13258 ioopos 13321 injresinj 13688 hashle00 14304 prprrab 14377 xpcogend 14878 cnpart 15144 fz1f1o 15614 nndivdvds 16169 dvdsmultr2 16206 bitsmod 16344 sadadd 16375 sadass 16379 smuval2 16390 smumul 16401 pcmpt 16801 pcmpt2 16802 prmreclem2 16826 prmreclem5 16829 ramcl 16938 mrcidb2 17521 acsfn 17562 fncnvimaeqv 18023 latleeqj1 18354 resmndismnd 18713 pgpssslw 19524 subgdmdprd 19946 resrhm2b 20515 acsfn1p 20712 lssle0 20881 islpir2 21265 islinds3 21769 iscld4 22978 cncnpi 23191 cnprest2 23203 lmss 23211 isconn2 23327 dfconn2 23332 subislly 23394 lly1stc 23409 elptr 23486 txcn 23539 xkoinjcn 23600 tsmsres 24057 isxmet2d 24240 xmetgt0 24271 prdsxmetlem 24281 imasdsf1olem 24286 xblss2 24315 stdbdbl 24430 prdsxmslem2 24442 xrtgioo 24720 xrsxmet 24723 cnmpopc 24847 elpi1i 24971 minveclem7 25360 elovolmr 25402 ismbf 25554 mbfmax 25575 itg1val2 25610 mbfi1fseqlem4 25644 itgresr 25705 iblrelem 25717 iblpos 25719 rlimcnp 26900 rlimcnp2 26901 chpchtsum 27155 lgsneg 27257 lgsdilem 27260 2lgslem1a 27327 eqscut2 27745 n0subs 28287 zsoring 28330 lmiinv 28768 isspthonpth 29725 s3wwlks2on 29932 clwlkclwwlk 29977 clwwlknonel 30070 clwwlknun 30087 eupth2lem2 30194 frgr3vlem2 30249 numclwwlk2lem1 30351 nrt2irr 30448 minvecolem7 30858 shle0 31417 mdsl2bi 32298 dmdbr5ati 32397 cdj3lem1 32409 qsfld 33458 eulerpartlemr 34382 subfacp1lem3 35214 satefvfmla1 35457 hfext 36216 bj-issetwt 36908 poimirlem25 37684 poimirlem26 37685 poimirlem27 37686 mblfinlem3 37698 mblfinlem4 37699 mbfresfi 37705 itg2addnclem 37710 itg2addnc 37713 heiborlem10 37859 relssinxpdmrn 38376 dffunsALTV2 38721 dffunsALTV3 38722 dffunsALTV4 38723 elfunsALTV2 38730 elfunsALTV3 38731 elfunsALTV4 38732 elfunsALTV5 38733 dfdisjs2 38746 dfdisjs5 38749 eldisjs2 38760 ople0 39225 atlle0 39343 cdlemg10c 40677 cdlemg33c 40746 hdmap14lem13 41918 mrefg3 42740 onsupneqmaxlim0 43256 onsupnmax 43260 radcnvrat 44346 2ffzoeq 47357 |
| Copyright terms: Public domain | W3C validator |