| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ifptru 1074 cad1 1617 raldifeq 4460 rexreusng 4646 posn 5727 dmxp 5895 elrnmpt1 5927 dfres3 5958 opelres 5959 ffrnbd 6706 fliftf 7293 eroveu 8788 ixpfi2 9308 elfi2 9372 dffi3 9389 cfss 10225 wunex2 10698 nnle1eq1 12223 nn0le0eq0 12477 ixxun 13329 ioopos 13392 injresinj 13756 hashle00 14372 prprrab 14445 xpcogend 14947 cnpart 15213 fz1f1o 15683 nndivdvds 16238 dvdsmultr2 16275 bitsmod 16413 sadadd 16444 sadass 16448 smuval2 16459 smumul 16470 pcmpt 16870 pcmpt2 16871 prmreclem2 16895 prmreclem5 16898 ramcl 17007 mrcidb2 17586 acsfn 17627 fncnvimaeqv 18088 latleeqj1 18417 resmndismnd 18742 pgpssslw 19551 subgdmdprd 19973 resrhm2b 20518 acsfn1p 20715 lssle0 20863 islpir2 21247 islinds3 21750 iscld4 22959 cncnpi 23172 cnprest2 23184 lmss 23192 isconn2 23308 dfconn2 23313 subislly 23375 lly1stc 23390 elptr 23467 txcn 23520 xkoinjcn 23581 tsmsres 24038 isxmet2d 24222 xmetgt0 24253 prdsxmetlem 24263 imasdsf1olem 24268 xblss2 24297 stdbdbl 24412 prdsxmslem2 24424 xrtgioo 24702 xrsxmet 24705 cnmpopc 24829 elpi1i 24953 minveclem7 25342 elovolmr 25384 ismbf 25536 mbfmax 25557 itg1val2 25592 mbfi1fseqlem4 25626 itgresr 25687 iblrelem 25699 iblpos 25701 rlimcnp 26882 rlimcnp2 26883 chpchtsum 27137 lgsneg 27239 lgsdilem 27242 2lgslem1a 27309 eqscut2 27725 n0subs 28260 lmiinv 28726 isspthonpth 29686 s3wwlks2on 29893 clwlkclwwlk 29938 clwwlknonel 30031 clwwlknun 30048 eupth2lem2 30155 frgr3vlem2 30210 numclwwlk2lem1 30312 nrt2irr 30409 minvecolem7 30819 shle0 31378 mdsl2bi 32259 dmdbr5ati 32358 cdj3lem1 32370 qsfld 33476 eulerpartlemr 34372 subfacp1lem3 35176 satefvfmla1 35419 hfext 36178 bj-issetwt 36870 poimirlem25 37646 poimirlem26 37647 poimirlem27 37648 mblfinlem3 37660 mblfinlem4 37661 mbfresfi 37667 itg2addnclem 37672 itg2addnc 37675 heiborlem10 37821 relssinxpdmrn 38338 dffunsALTV2 38683 dffunsALTV3 38684 dffunsALTV4 38685 elfunsALTV2 38692 elfunsALTV3 38693 elfunsALTV4 38694 elfunsALTV5 38695 dfdisjs2 38708 dfdisjs5 38711 eldisjs2 38722 ople0 39187 atlle0 39305 cdlemg10c 40640 cdlemg33c 40709 hdmap14lem13 41881 mrefg3 42703 onsupneqmaxlim0 43220 onsupnmax 43224 radcnvrat 44310 2ffzoeq 47332 |
| Copyright terms: Public domain | W3C validator |