Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ifptru 1072 cad1 1620 raldifeq 4421 rexreusng 4612 posn 5663 elrnmpt1 5856 dfres3 5885 opelres 5886 ffrnbd 6600 fliftf 7166 eroveu 8559 ixpfi2 9047 elfi2 9103 dffi3 9120 cfss 9952 wunex2 10425 nnle1eq1 11933 nn0le0eq0 12191 ixxun 13024 ioopos 13085 injresinj 13436 hashle00 14043 prprrab 14115 xpcogend 14613 cnpart 14879 fz1f1o 15350 nndivdvds 15900 dvdsmultr2 15935 bitsmod 16071 sadadd 16102 sadass 16106 smuval2 16117 smumul 16128 pcmpt 16521 pcmpt2 16522 prmreclem2 16546 prmreclem5 16549 ramcl 16658 mrcidb2 17244 acsfn 17285 fncnvimaeqv 17752 latleeqj1 18084 resmndismnd 18362 pgpssslw 19134 subgdmdprd 19552 acsfn1p 19982 lssle0 20126 islpir2 20435 islinds3 20951 iscld4 22124 cncnpi 22337 cnprest2 22349 lmss 22357 isconn2 22473 dfconn2 22478 subislly 22540 lly1stc 22555 elptr 22632 txcn 22685 xkoinjcn 22746 tsmsres 23203 isxmet2d 23388 xmetgt0 23419 prdsxmetlem 23429 imasdsf1olem 23434 xblss2 23463 stdbdbl 23579 prdsxmslem2 23591 xrtgioo 23875 xrsxmet 23878 cnmpopc 23997 elpi1i 24115 minveclem7 24504 elovolmr 24545 ismbf 24697 mbfmax 24718 itg1val2 24753 mbfi1fseqlem4 24788 itgresr 24848 iblrelem 24860 iblpos 24862 rlimcnp 26020 rlimcnp2 26021 chpchtsum 26272 lgsneg 26374 lgsdilem 26377 2lgslem1a 26444 lmiinv 27057 isspthonpth 28018 s3wwlks2on 28222 clwlkclwwlk 28267 clwwlknonel 28360 clwwlknun 28377 eupth2lem2 28484 frgr3vlem2 28539 numclwwlk2lem1 28641 minvecolem7 29146 shle0 29705 mdsl2bi 30586 dmdbr5ati 30685 cdj3lem1 30697 eulerpartlemr 32241 subfacp1lem3 33044 satefvfmla1 33287 eqscut2 33927 hfext 34412 bj-issetwt 34986 poimirlem25 35729 poimirlem26 35730 poimirlem27 35731 mblfinlem3 35743 mblfinlem4 35744 mbfresfi 35750 itg2addnclem 35755 itg2addnc 35758 heiborlem10 35905 dffunsALTV2 36722 dffunsALTV3 36723 dffunsALTV4 36724 elfunsALTV2 36731 elfunsALTV3 36732 elfunsALTV4 36733 elfunsALTV5 36734 dfdisjs2 36747 dfdisjs5 36750 eldisjs2 36761 ople0 37128 atlle0 37246 cdlemg10c 38580 cdlemg33c 38649 hdmap14lem13 39821 mrefg3 40446 radcnvrat 41821 2ffzoeq 44708 |
Copyright terms: Public domain | W3C validator |