| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ifptru 1074 cad1 1617 raldifeq 4469 rexreusng 4655 posn 5740 dmxp 5908 elrnmpt1 5940 dfres3 5971 opelres 5972 ffrnbd 6720 fliftf 7307 eroveu 8824 ixpfi2 9360 elfi2 9424 dffi3 9441 cfss 10277 wunex2 10750 nnle1eq1 12268 nn0le0eq0 12527 ixxun 13376 ioopos 13439 injresinj 13802 hashle00 14416 prprrab 14489 xpcogend 14991 cnpart 15257 fz1f1o 15724 nndivdvds 16279 dvdsmultr2 16315 bitsmod 16453 sadadd 16484 sadass 16488 smuval2 16499 smumul 16510 pcmpt 16910 pcmpt2 16911 prmreclem2 16935 prmreclem5 16938 ramcl 17047 mrcidb2 17628 acsfn 17669 fncnvimaeqv 18130 latleeqj1 18459 resmndismnd 18784 pgpssslw 19593 subgdmdprd 20015 resrhm2b 20560 acsfn1p 20757 lssle0 20905 islpir2 21289 islinds3 21792 iscld4 23001 cncnpi 23214 cnprest2 23226 lmss 23234 isconn2 23350 dfconn2 23355 subislly 23417 lly1stc 23432 elptr 23509 txcn 23562 xkoinjcn 23623 tsmsres 24080 isxmet2d 24264 xmetgt0 24295 prdsxmetlem 24305 imasdsf1olem 24310 xblss2 24339 stdbdbl 24454 prdsxmslem2 24466 xrtgioo 24744 xrsxmet 24747 cnmpopc 24871 elpi1i 24995 minveclem7 25385 elovolmr 25427 ismbf 25579 mbfmax 25600 itg1val2 25635 mbfi1fseqlem4 25669 itgresr 25730 iblrelem 25742 iblpos 25744 rlimcnp 26925 rlimcnp2 26926 chpchtsum 27180 lgsneg 27282 lgsdilem 27285 2lgslem1a 27352 eqscut2 27768 n0subs 28277 lmiinv 28717 isspthonpth 29677 s3wwlks2on 29884 clwlkclwwlk 29929 clwwlknonel 30022 clwwlknun 30039 eupth2lem2 30146 frgr3vlem2 30201 numclwwlk2lem1 30303 nrt2irr 30400 minvecolem7 30810 shle0 31369 mdsl2bi 32250 dmdbr5ati 32349 cdj3lem1 32361 qsfld 33459 eulerpartlemr 34352 subfacp1lem3 35150 satefvfmla1 35393 hfext 36147 bj-issetwt 36839 poimirlem25 37615 poimirlem26 37616 poimirlem27 37617 mblfinlem3 37629 mblfinlem4 37630 mbfresfi 37636 itg2addnclem 37641 itg2addnc 37644 heiborlem10 37790 relssinxpdmrn 38313 dffunsALTV2 38648 dffunsALTV3 38649 dffunsALTV4 38650 elfunsALTV2 38657 elfunsALTV3 38658 elfunsALTV4 38659 elfunsALTV5 38660 dfdisjs2 38673 dfdisjs5 38676 eldisjs2 38687 ople0 39151 atlle0 39269 cdlemg10c 40604 cdlemg33c 40673 hdmap14lem13 41845 mrefg3 42678 onsupneqmaxlim0 43195 onsupnmax 43199 radcnvrat 44286 2ffzoeq 47304 |
| Copyright terms: Public domain | W3C validator |