| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ifptru 1074 cad1 1617 raldifeq 4457 rexreusng 4643 posn 5724 dmxp 5892 elrnmpt1 5924 dfres3 5955 opelres 5956 ffrnbd 6703 fliftf 7290 eroveu 8785 ixpfi2 9301 elfi2 9365 dffi3 9382 cfss 10218 wunex2 10691 nnle1eq1 12216 nn0le0eq0 12470 ixxun 13322 ioopos 13385 injresinj 13749 hashle00 14365 prprrab 14438 xpcogend 14940 cnpart 15206 fz1f1o 15676 nndivdvds 16231 dvdsmultr2 16268 bitsmod 16406 sadadd 16437 sadass 16441 smuval2 16452 smumul 16463 pcmpt 16863 pcmpt2 16864 prmreclem2 16888 prmreclem5 16891 ramcl 17000 mrcidb2 17579 acsfn 17620 fncnvimaeqv 18081 latleeqj1 18410 resmndismnd 18735 pgpssslw 19544 subgdmdprd 19966 resrhm2b 20511 acsfn1p 20708 lssle0 20856 islpir2 21240 islinds3 21743 iscld4 22952 cncnpi 23165 cnprest2 23177 lmss 23185 isconn2 23301 dfconn2 23306 subislly 23368 lly1stc 23383 elptr 23460 txcn 23513 xkoinjcn 23574 tsmsres 24031 isxmet2d 24215 xmetgt0 24246 prdsxmetlem 24256 imasdsf1olem 24261 xblss2 24290 stdbdbl 24405 prdsxmslem2 24417 xrtgioo 24695 xrsxmet 24698 cnmpopc 24822 elpi1i 24946 minveclem7 25335 elovolmr 25377 ismbf 25529 mbfmax 25550 itg1val2 25585 mbfi1fseqlem4 25619 itgresr 25680 iblrelem 25692 iblpos 25694 rlimcnp 26875 rlimcnp2 26876 chpchtsum 27130 lgsneg 27232 lgsdilem 27235 2lgslem1a 27302 eqscut2 27718 n0subs 28253 lmiinv 28719 isspthonpth 29679 s3wwlks2on 29886 clwlkclwwlk 29931 clwwlknonel 30024 clwwlknun 30041 eupth2lem2 30148 frgr3vlem2 30203 numclwwlk2lem1 30305 nrt2irr 30402 minvecolem7 30812 shle0 31371 mdsl2bi 32252 dmdbr5ati 32351 cdj3lem1 32363 qsfld 33469 eulerpartlemr 34365 subfacp1lem3 35169 satefvfmla1 35412 hfext 36171 bj-issetwt 36863 poimirlem25 37639 poimirlem26 37640 poimirlem27 37641 mblfinlem3 37653 mblfinlem4 37654 mbfresfi 37660 itg2addnclem 37665 itg2addnc 37668 heiborlem10 37814 relssinxpdmrn 38331 dffunsALTV2 38676 dffunsALTV3 38677 dffunsALTV4 38678 elfunsALTV2 38685 elfunsALTV3 38686 elfunsALTV4 38687 elfunsALTV5 38688 dfdisjs2 38701 dfdisjs5 38704 eldisjs2 38715 ople0 39180 atlle0 39298 cdlemg10c 40633 cdlemg33c 40702 hdmap14lem13 41874 mrefg3 42696 onsupneqmaxlim0 43213 onsupnmax 43217 radcnvrat 44303 2ffzoeq 47328 |
| Copyright terms: Public domain | W3C validator |