| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biantrud | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| biantrud | ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | iba 527 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ifptru 1074 cad1 1617 raldifeq 4447 rexreusng 4633 posn 5709 dmxp 5875 elrnmpt1 5906 dfres3 5939 opelres 5940 ffrnbd 6671 fliftf 7256 eroveu 8746 ixpfi2 9259 elfi2 9323 dffi3 9340 cfss 10178 wunex2 10651 nnle1eq1 12176 nn0le0eq0 12430 ixxun 13282 ioopos 13345 injresinj 13709 hashle00 14325 prprrab 14398 xpcogend 14899 cnpart 15165 fz1f1o 15635 nndivdvds 16190 dvdsmultr2 16227 bitsmod 16365 sadadd 16396 sadass 16400 smuval2 16411 smumul 16422 pcmpt 16822 pcmpt2 16823 prmreclem2 16847 prmreclem5 16850 ramcl 16959 mrcidb2 17542 acsfn 17583 fncnvimaeqv 18044 latleeqj1 18375 resmndismnd 18700 pgpssslw 19511 subgdmdprd 19933 resrhm2b 20505 acsfn1p 20702 lssle0 20871 islpir2 21255 islinds3 21759 iscld4 22968 cncnpi 23181 cnprest2 23193 lmss 23201 isconn2 23317 dfconn2 23322 subislly 23384 lly1stc 23399 elptr 23476 txcn 23529 xkoinjcn 23590 tsmsres 24047 isxmet2d 24231 xmetgt0 24262 prdsxmetlem 24272 imasdsf1olem 24277 xblss2 24306 stdbdbl 24421 prdsxmslem2 24433 xrtgioo 24711 xrsxmet 24714 cnmpopc 24838 elpi1i 24962 minveclem7 25351 elovolmr 25393 ismbf 25545 mbfmax 25566 itg1val2 25601 mbfi1fseqlem4 25635 itgresr 25696 iblrelem 25708 iblpos 25710 rlimcnp 26891 rlimcnp2 26892 chpchtsum 27146 lgsneg 27248 lgsdilem 27251 2lgslem1a 27318 eqscut2 27735 n0subs 28276 zsoring 28319 lmiinv 28755 isspthonpth 29712 s3wwlks2on 29919 clwlkclwwlk 29964 clwwlknonel 30057 clwwlknun 30074 eupth2lem2 30181 frgr3vlem2 30236 numclwwlk2lem1 30338 nrt2irr 30435 minvecolem7 30845 shle0 31404 mdsl2bi 32285 dmdbr5ati 32384 cdj3lem1 32396 qsfld 33445 eulerpartlemr 34341 subfacp1lem3 35154 satefvfmla1 35397 hfext 36156 bj-issetwt 36848 poimirlem25 37624 poimirlem26 37625 poimirlem27 37626 mblfinlem3 37638 mblfinlem4 37639 mbfresfi 37645 itg2addnclem 37650 itg2addnc 37653 heiborlem10 37799 relssinxpdmrn 38316 dffunsALTV2 38661 dffunsALTV3 38662 dffunsALTV4 38663 elfunsALTV2 38670 elfunsALTV3 38671 elfunsALTV4 38672 elfunsALTV5 38673 dfdisjs2 38686 dfdisjs5 38689 eldisjs2 38700 ople0 39165 atlle0 39283 cdlemg10c 40618 cdlemg33c 40687 hdmap14lem13 41859 mrefg3 42681 onsupneqmaxlim0 43197 onsupnmax 43201 radcnvrat 44287 2ffzoeq 47312 |
| Copyright terms: Public domain | W3C validator |