MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk Structured version   Visualization version   GIF version

Theorem clwlkclwwlk 29988
Description: A closed walk as word of length at least 2 corresponds to a closed walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlk.e . . . . . 6 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 29157 . . . . 5 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
3 f1of1 6822 . . . . 5 (𝐸:dom 𝐸1-1-onto→(Edg‘𝐺) → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
42, 3syl 17 . . . 4 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
5 clwlkclwwlklem3 29987 . . . 4 ((𝐸:dom 𝐸1-1→(Edg‘𝐺) ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
64, 5syl3an1 1163 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
7 lencl 14556 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 ige2m1fz 13639 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
97, 8sylan 580 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
10 pfxlen 14706 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃))) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
119, 10syldan 591 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
127nn0cnd 12569 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
13 1cnd 11235 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
1412, 13subcld 11599 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℂ)
1514subid1d 11588 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
1615eqcomd 2742 . . . . . . . . . . . . 13 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1716adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1811, 17eqtrd 2771 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = (((♯‘𝑃) − 1) − 0))
1918oveq1d 7425 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = ((((♯‘𝑃) − 1) − 0) − 1))
2019oveq2d 7426 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^((((♯‘𝑃) − 1) − 0) − 1)))
2111oveq1d 7425 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = (((♯‘𝑃) − 1) − 1))
2221oveq2d 7426 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^(((♯‘𝑃) − 1) − 1)))
2322eleq2d 2821 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) ↔ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))))
24 simpll 766 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ∈ Word 𝑉)
25 wrdlenge2n0 14575 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ≠ ∅)
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ≠ ∅)
27 nn0z 12618 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
28 peano2zm 12640 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
307, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℤ)
3130adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℤ)
32 elfzom1elfzo 13754 . . . . . . . . . . . . . . . 16 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
3331, 32sylan 580 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
34 pfxtrcfv 14716 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
3524, 26, 33, 34syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
367adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
37 elfzom1elp1fzo 13753 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3829, 37sylan 580 . . . . . . . . . . . . . . . 16 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3936, 38sylan 580 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
40 pfxtrcfv 14716 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4124, 26, 39, 40syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4235, 41preq12d 4722 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
4342eleq1d 2820 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4443ex 412 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4523, 44sylbid 240 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4645imp 406 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4720, 46raleqbidva 3315 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
48 pfxtrcfvl 14720 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘(𝑃 prefix ((♯‘𝑃) − 1))) = (𝑃‘((♯‘𝑃) − 2)))
49 pfxtrcfv0 14717 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1))‘0) = (𝑃‘0))
5048, 49preq12d 4722 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
5150eleq1d 2820 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5247, 51anbi12d 632 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
5352bicomd 223 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
54533adant1 1130 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
55 pfxcl 14700 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
56553ad2ant2 1134 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
57563biant1d 1480 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5854, 57bitrd 279 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5958anbi2d 630 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
606, 59bitrd 279 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
61 uspgrupgr 29162 . . . . . 6 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
62 clwlkclwwlk.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6362, 1isclwlkupgr 29765 . . . . . . 7 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))))
64 3an4anass 1104 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6563, 64bitr4di 289 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6661, 65syl 17 . . . . 5 (𝐺 ∈ USPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6766adantr 480 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6867exbidv 1921 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
69683adant3 1132 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
70 eqid 2736 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
7162, 70isclwwlk 29970 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)))
72 simpl 482 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
73 nn0ge2m1nn 12576 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
747, 73sylan 580 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
75 nn0re 12515 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
7675lem1d 12180 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
7776a1d 25 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
787, 77syl 17 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
7978imp 406 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
8072, 74, 793jca 1128 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
81803adant1 1130 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
82 pfxn0 14709 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8381, 82syl 17 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8483biantrud 531 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)))
8584bicomd 223 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉))
86853anbi1d 1442 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
8771, 86bitrid 283 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
88 biid 261 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
89 edgval 29033 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
901eqcomi 2745 . . . . . . . . 9 (iEdg‘𝐺) = 𝐸
9190rneqi 5922 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐸
9289, 91eqtri 2759 . . . . . . 7 (Edg‘𝐺) = ran 𝐸
9392eleq2i 2827 . . . . . 6 ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9493ralbii 3083 . . . . 5 (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9592eleq2i 2827 . . . . 5 ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺) ↔ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)
9688, 94, 953anbi123i 1155 . . . 4 (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))
9787, 96bitrdi 287 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
9897anbi2d 630 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
9960, 69, 983bitr4d 311 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  c0 4313  {cpr 4608   class class class wbr 5124  dom cdm 5659  ran crn 5660  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cmin 11471  cn 12245  2c2 12300  0cn0 12506  cz 12593  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536  lastSclsw 14585   prefix cpfx 14693  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UPGraphcupgr 29064  USPGraphcuspgr 29132  ClWalkscclwlks 29757  ClWWalkscclwwlk 29967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-lsw 14586  df-substr 14664  df-pfx 14694  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-uspgr 29134  df-wlks 29584  df-clwlks 29758  df-clwwlk 29968
This theorem is referenced by:  clwlkclwwlk2  29989  clwlkclwwlkf  29994
  Copyright terms: Public domain W3C validator