MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk Structured version   Visualization version   GIF version

Theorem clwlkclwwlk 30034
Description: A closed walk as word of length at least 2 corresponds to a closed walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlk.e . . . . . 6 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 29208 . . . . 5 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
3 f1of1 6861 . . . . 5 (𝐸:dom 𝐸1-1-onto→(Edg‘𝐺) → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
42, 3syl 17 . . . 4 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
5 clwlkclwwlklem3 30033 . . . 4 ((𝐸:dom 𝐸1-1→(Edg‘𝐺) ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
64, 5syl3an1 1163 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
7 lencl 14581 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 ige2m1fz 13674 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
97, 8sylan 579 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
10 pfxlen 14731 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃))) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
119, 10syldan 590 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
127nn0cnd 12615 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
13 1cnd 11285 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
1412, 13subcld 11647 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℂ)
1514subid1d 11636 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
1615eqcomd 2746 . . . . . . . . . . . . 13 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1716adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1811, 17eqtrd 2780 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = (((♯‘𝑃) − 1) − 0))
1918oveq1d 7463 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = ((((♯‘𝑃) − 1) − 0) − 1))
2019oveq2d 7464 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^((((♯‘𝑃) − 1) − 0) − 1)))
2111oveq1d 7463 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = (((♯‘𝑃) − 1) − 1))
2221oveq2d 7464 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^(((♯‘𝑃) − 1) − 1)))
2322eleq2d 2830 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) ↔ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))))
24 simpll 766 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ∈ Word 𝑉)
25 wrdlenge2n0 14600 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ≠ ∅)
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ≠ ∅)
27 nn0z 12664 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
28 peano2zm 12686 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
307, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℤ)
3130adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℤ)
32 elfzom1elfzo 13784 . . . . . . . . . . . . . . . 16 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
3331, 32sylan 579 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
34 pfxtrcfv 14741 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
3524, 26, 33, 34syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
367adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
37 elfzom1elp1fzo 13783 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3829, 37sylan 579 . . . . . . . . . . . . . . . 16 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3936, 38sylan 579 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
40 pfxtrcfv 14741 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4124, 26, 39, 40syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4235, 41preq12d 4766 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
4342eleq1d 2829 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4443ex 412 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4523, 44sylbid 240 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4645imp 406 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4720, 46raleqbidva 3340 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
48 pfxtrcfvl 14745 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘(𝑃 prefix ((♯‘𝑃) − 1))) = (𝑃‘((♯‘𝑃) − 2)))
49 pfxtrcfv0 14742 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1))‘0) = (𝑃‘0))
5048, 49preq12d 4766 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
5150eleq1d 2829 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5247, 51anbi12d 631 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
5352bicomd 223 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
54533adant1 1130 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
55 pfxcl 14725 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
56553ad2ant2 1134 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
57563biant1d 1478 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5854, 57bitrd 279 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5958anbi2d 629 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
606, 59bitrd 279 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
61 uspgrupgr 29213 . . . . . 6 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
62 clwlkclwwlk.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6362, 1isclwlkupgr 29814 . . . . . . 7 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))))
64 3an4anass 1105 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6563, 64bitr4di 289 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6661, 65syl 17 . . . . 5 (𝐺 ∈ USPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6766adantr 480 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6867exbidv 1920 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
69683adant3 1132 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
70 eqid 2740 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
7162, 70isclwwlk 30016 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)))
72 simpl 482 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
73 nn0ge2m1nn 12622 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
747, 73sylan 579 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
75 nn0re 12562 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
7675lem1d 12228 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
7776a1d 25 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
787, 77syl 17 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
7978imp 406 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
8072, 74, 793jca 1128 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
81803adant1 1130 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
82 pfxn0 14734 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8381, 82syl 17 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8483biantrud 531 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)))
8584bicomd 223 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉))
86853anbi1d 1440 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
8771, 86bitrid 283 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
88 biid 261 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
89 edgval 29084 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
901eqcomi 2749 . . . . . . . . 9 (iEdg‘𝐺) = 𝐸
9190rneqi 5962 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐸
9289, 91eqtri 2768 . . . . . . 7 (Edg‘𝐺) = ran 𝐸
9392eleq2i 2836 . . . . . 6 ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9493ralbii 3099 . . . . 5 (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9592eleq2i 2836 . . . . 5 ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺) ↔ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)
9688, 94, 953anbi123i 1155 . . . 4 (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))
9787, 96bitrdi 287 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
9897anbi2d 629 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
9960, 69, 983bitr4d 311 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  c0 4352  {cpr 4650   class class class wbr 5166  dom cdm 5700  ran crn 5701  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610   prefix cpfx 14718  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UPGraphcupgr 29115  USPGraphcuspgr 29183  ClWalkscclwlks 29806  ClWWalkscclwwlk 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-substr 14689  df-pfx 14719  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-uspgr 29185  df-wlks 29635  df-clwlks 29807  df-clwwlk 30014
This theorem is referenced by:  clwlkclwwlk2  30035  clwlkclwwlkf  30040
  Copyright terms: Public domain W3C validator