MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk Structured version   Visualization version   GIF version

Theorem clwlkclwwlk 27467
Description: A closed walk as word of length at least 2 corresponds to a closed walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 30-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlk.e . . . . . 6 𝐸 = (iEdg‘𝐺)
21uspgrf1oedg 26641 . . . . 5 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
3 f1of1 6482 . . . . 5 (𝐸:dom 𝐸1-1-onto→(Edg‘𝐺) → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
42, 3syl 17 . . . 4 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→(Edg‘𝐺))
5 clwlkclwwlklem3 27466 . . . 4 ((𝐸:dom 𝐸1-1→(Edg‘𝐺) ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
64, 5syl3an1 1156 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
7 lencl 13729 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 ige2m1fz 12847 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
97, 8sylan 580 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃)))
10 pfxlen 13881 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ (0...(♯‘𝑃))) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
119, 10syldan 591 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = ((♯‘𝑃) − 1))
127nn0cnd 11805 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
13 1cnd 10482 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
1412, 13subcld 10845 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℂ)
1514subid1d 10834 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
1615eqcomd 2801 . . . . . . . . . . . . 13 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1716adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
1811, 17eqtrd 2831 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 prefix ((♯‘𝑃) − 1))) = (((♯‘𝑃) − 1) − 0))
1918oveq1d 7031 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = ((((♯‘𝑃) − 1) − 0) − 1))
2019oveq2d 7032 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^((((♯‘𝑃) − 1) − 0) − 1)))
2111oveq1d 7031 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1) = (((♯‘𝑃) − 1) − 1))
2221oveq2d 7032 . . . . . . . . . . . 12 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) = (0..^(((♯‘𝑃) − 1) − 1)))
2322eleq2d 2868 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) ↔ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))))
24 simpll 763 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ∈ Word 𝑉)
25 wrdlenge2n0 13750 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ≠ ∅)
2625adantr 481 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑃 ≠ ∅)
27 nn0z 11854 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
28 peano2zm 11874 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
307, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈ ℤ)
3130adantr 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℤ)
32 elfzom1elfzo 12955 . . . . . . . . . . . . . . . 16 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
3331, 32sylan 580 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → 𝑖 ∈ (0..^((♯‘𝑃) − 1)))
34 pfxtrcfv 13891 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
3524, 26, 33, 34syl3anc 1364 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖) = (𝑃𝑖))
367adantr 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ0)
37 elfzom1elp1fzo 12954 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑃) − 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3829, 37sylan 580 . . . . . . . . . . . . . . . 16 (((♯‘𝑃) ∈ ℕ0𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
3936, 38sylan 580 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1)))
40 pfxtrcfv 13891 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word 𝑉𝑃 ≠ ∅ ∧ (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4124, 26, 39, 40syl3anc 1364 . . . . . . . . . . . . . 14 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
4235, 41preq12d 4584 . . . . . . . . . . . . 13 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
4342eleq1d 2867 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4443ex 413 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4523, 44sylbid 241 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)))
4645imp 407 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1))) → ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
4720, 46raleqbidva 3385 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
48 pfxtrcfvl 13895 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘(𝑃 prefix ((♯‘𝑃) − 1))) = (𝑃‘((♯‘𝑃) − 2)))
49 pfxtrcfv0 13892 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1))‘0) = (𝑃‘0))
5048, 49preq12d 4584 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
5150eleq1d 2867 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5247, 51anbi12d 630 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
5352bicomd 224 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
54533adant1 1123 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
55 pfxcl 13875 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
56553ad2ant2 1127 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
57563biant1d 1470 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5854, 57bitrd 280 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
5958anbi2d 628 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
606, 59bitrd 280 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
61 uspgrupgr 26644 . . . . . 6 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
62 clwlkclwwlk.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
6362, 1isclwlkupgr 27246 . . . . . . 7 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))))
64 3an4anass 1098 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6563, 64syl6bbr 290 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6661, 65syl 17 . . . . 5 (𝐺 ∈ USPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6766adantr 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6867exbidv 1899 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
69683adant3 1125 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
70 eqid 2795 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
7162, 70isclwwlk 27449 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)))
72 simpl 483 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
73 nn0ge2m1nn 11812 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
747, 73sylan 580 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
75 nn0re 11754 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
7675lem1d 11421 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
7776a1d 25 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
787, 77syl 17 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
7978imp 407 . . . . . . . . . . 11 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))
8072, 74, 793jca 1121 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
81803adant1 1123 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)))
82 pfxn0 13884 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 1) ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8381, 82syl 17 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)
8483biantrud 532 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅)))
8584bicomd 224 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉))
86853anbi1d 1432 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
8771, 86syl5bb 284 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺))))
88 biid 262 . . . . 5 ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ↔ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉)
89 edgval 26517 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
901eqcomi 2804 . . . . . . . . 9 (iEdg‘𝐺) = 𝐸
9190rneqi 5689 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐸
9289, 91eqtri 2819 . . . . . . 7 (Edg‘𝐺) = ran 𝐸
9392eleq2i 2874 . . . . . 6 ({((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9493ralbii 3132 . . . . 5 (∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸)
9592eleq2i 2874 . . . . 5 ({(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺) ↔ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)
9688, 94, 953anbi123i 1148 . . . 4 (((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))
9787, 96syl6bb 288 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸)))
9897anbi2d 628 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ((𝑃 prefix ((♯‘𝑃) − 1)) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 prefix ((♯‘𝑃) − 1))) − 1)){((𝑃 prefix ((♯‘𝑃) − 1))‘𝑖), ((𝑃 prefix ((♯‘𝑃) − 1))‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(lastS‘(𝑃 prefix ((♯‘𝑃) − 1))), ((𝑃 prefix ((♯‘𝑃) − 1))‘0)} ∈ ran 𝐸))))
9960, 69, 983bitr4d 312 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wne 2984  wral 3105  c0 4211  {cpr 4474   class class class wbr 4962  dom cdm 5443  ran crn 5444  wf 6221  1-1wf1 6222  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  0cc0 10383  1c1 10384   + caddc 10386  cle 10522  cmin 10717  cn 11486  2c2 11540  0cn0 11745  cz 11829  ...cfz 12742  ..^cfzo 12883  chash 13540  Word cword 13707  lastSclsw 13760   prefix cpfx 13868  Vtxcvtx 26464  iEdgciedg 26465  Edgcedg 26515  UPGraphcupgr 26548  USPGraphcuspgr 26616  ClWalkscclwlks 27238  ClWWalkscclwwlk 27446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ifp 1056  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-lsw 13761  df-substr 13839  df-pfx 13869  df-edg 26516  df-uhgr 26526  df-upgr 26550  df-uspgr 26618  df-wlks 27064  df-clwlks 27239  df-clwwlk 27447
This theorem is referenced by:  clwlkclwwlk2  27468  clwlkclwwlkf  27473
  Copyright terms: Public domain W3C validator