Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgcd3 Structured version   Visualization version   GIF version

Theorem dfgcd3 34686
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
StepHypRef Expression
1 gcdcl 15853 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 simplr 768 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
32nn0zd 12082 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
4 iddvds 15623 . . . . . . . 8 (𝑑 ∈ ℤ → 𝑑𝑑)
53, 4syl 17 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑𝑑)
6 simpr 488 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
7 breq1 5055 . . . . . . . . . 10 (𝑧 = 𝑑 → (𝑧𝑑𝑑𝑑))
8 breq1 5055 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝑧𝑀𝑑𝑀))
9 breq1 5055 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝑧𝑁𝑑𝑁))
108, 9anbi12d 633 . . . . . . . . . 10 (𝑧 = 𝑑 → ((𝑧𝑀𝑧𝑁) ↔ (𝑑𝑀𝑑𝑁)))
117, 10bibi12d 349 . . . . . . . . 9 (𝑧 = 𝑑 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁))))
1211rspcv 3604 . . . . . . . 8 (𝑑 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁))))
133, 6, 12sylc 65 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁)))
145, 13mpbid 235 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑𝑀𝑑𝑁))
15 biimpr 223 . . . . . . . 8 ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
1615ralimi 3155 . . . . . . 7 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
176, 16syl 17 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
18 dfgcd2 15892 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
1918adantr 484 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
20 simpr 488 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2120nn0ge0d 11955 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 0 ≤ 𝑑)
22213biant1d 1475 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑)) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2319, 22bitr4d 285 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) ↔ ((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2423adantr 484 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑 = (𝑀 gcd 𝑁) ↔ ((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2514, 17, 24mpbir2and 712 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = (𝑀 gcd 𝑁))
2625ex 416 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → 𝑑 = (𝑀 gcd 𝑁)))
27 dvdsgcdb 15891 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧𝑀𝑧𝑁) ↔ 𝑧 ∥ (𝑀 gcd 𝑁)))
2827bicomd 226 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
29283coml 1124 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
3029ad4ant124 1170 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
31 breq2 5056 . . . . . . . . . 10 (𝑑 = (𝑀 gcd 𝑁) → (𝑧𝑑𝑧 ∥ (𝑀 gcd 𝑁)))
3231bibi1d 347 . . . . . . . . 9 (𝑑 = (𝑀 gcd 𝑁) → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁))))
3332ad2antlr 726 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁))))
3430, 33mpbird 260 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
3534ralrimiva 3177 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
3635ex 416 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 = (𝑀 gcd 𝑁) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
3736adantr 484 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
3826, 37impbid 215 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = (𝑀 gcd 𝑁)))
391, 38riota5 7136 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = (𝑀 gcd 𝑁))
4039eqcomd 2830 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133   class class class wbr 5052  crio 7106  (class class class)co 7149  0cc0 10535  cle 10674  0cn0 11894  cz 11978  cdvds 15607   gcd cgcd 15841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator