Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgcd3 Structured version   Visualization version   GIF version

Theorem dfgcd3 37033
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
StepHypRef Expression
1 gcdcl 16508 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 simplr 767 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
32nn0zd 12638 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
4 iddvds 16274 . . . . . . . 8 (𝑑 ∈ ℤ → 𝑑𝑑)
53, 4syl 17 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑𝑑)
6 simpr 483 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
7 breq1 5158 . . . . . . . . . 10 (𝑧 = 𝑑 → (𝑧𝑑𝑑𝑑))
8 breq1 5158 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝑧𝑀𝑑𝑀))
9 breq1 5158 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝑧𝑁𝑑𝑁))
108, 9anbi12d 630 . . . . . . . . . 10 (𝑧 = 𝑑 → ((𝑧𝑀𝑧𝑁) ↔ (𝑑𝑀𝑑𝑁)))
117, 10bibi12d 344 . . . . . . . . 9 (𝑧 = 𝑑 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁))))
1211rspcv 3604 . . . . . . . 8 (𝑑 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁))))
133, 6, 12sylc 65 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁)))
145, 13mpbid 231 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑𝑀𝑑𝑁))
15 biimpr 219 . . . . . . . 8 ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
1615ralimi 3073 . . . . . . 7 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
176, 16syl 17 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
18 dfgcd2 16549 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
1918adantr 479 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
20 simpr 483 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2120nn0ge0d 12589 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 0 ≤ 𝑑)
22213biant1d 1475 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑)) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2319, 22bitr4d 281 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) ↔ ((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2423adantr 479 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑 = (𝑀 gcd 𝑁) ↔ ((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2514, 17, 24mpbir2and 711 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = (𝑀 gcd 𝑁))
2625ex 411 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → 𝑑 = (𝑀 gcd 𝑁)))
27 dvdsgcdb 16548 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧𝑀𝑧𝑁) ↔ 𝑧 ∥ (𝑀 gcd 𝑁)))
2827bicomd 222 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
29283coml 1124 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
3029ad4ant124 1170 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
31 breq2 5159 . . . . . . . . . 10 (𝑑 = (𝑀 gcd 𝑁) → (𝑧𝑑𝑧 ∥ (𝑀 gcd 𝑁)))
3231bibi1d 342 . . . . . . . . 9 (𝑑 = (𝑀 gcd 𝑁) → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁))))
3332ad2antlr 725 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁))))
3430, 33mpbird 256 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
3534ralrimiva 3136 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
3635ex 411 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 = (𝑀 gcd 𝑁) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
3736adantr 479 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
3826, 37impbid 211 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = (𝑀 gcd 𝑁)))
391, 38riota5 7412 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = (𝑀 gcd 𝑁))
4039eqcomd 2732 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5155  crio 7381  (class class class)co 7426  0cc0 11160  cle 11301  0cn0 12526  cz 12612  cdvds 16258   gcd cgcd 16496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-sup 9487  df-inf 9488  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-fl 13814  df-mod 13892  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-dvds 16259  df-gcd 16497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator