Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnclem2 Structured version   Visualization version   GIF version

Theorem itg2addnclem2 37651
Description: Lemma for itg2addnc 37653. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
itg2addnclem2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Distinct variable groups:   𝑥,𝑣,,𝐹   𝜑,𝑣,𝑥,

Proof of Theorem itg2addnclem2
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2addnc.f2 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 rge0ssre 13377 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
3 fss 6672 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
41, 2, 3sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
54ad2antrr 726 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
65ffvelcdmda 7022 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
7 rpre 12920 . . . . . . . . . 10 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
8 3re 12226 . . . . . . . . . . 11 3 ∈ ℝ
9 3ne0 12252 . . . . . . . . . . 11 3 ≠ 0
108, 9pm3.2i 470 . . . . . . . . . 10 (3 ∈ ℝ ∧ 3 ≠ 0)
11 redivcl 11861 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (𝑣 / 3) ∈ ℝ)
12113expb 1120 . . . . . . . . . 10 ((𝑣 ∈ ℝ ∧ (3 ∈ ℝ ∧ 3 ≠ 0)) → (𝑣 / 3) ∈ ℝ)
137, 10, 12sylancl 586 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ)
1413ad2antlr 727 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
15 rpcnne0 12930 . . . . . . . . . 10 (𝑣 ∈ ℝ+ → (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
16 3cn 12227 . . . . . . . . . . 11 3 ∈ ℂ
1716, 9pm3.2i 470 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 ≠ 0)
18 divne0 11809 . . . . . . . . . 10 (((𝑣 ∈ ℂ ∧ 𝑣 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (𝑣 / 3) ≠ 0)
1915, 17, 18sylancl 586 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ≠ 0)
2019ad2antlr 727 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
216, 14, 20redivcld 11970 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
22 reflcl 13718 . . . . . . 7 (((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
2321, 22syl 17 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
24 peano2rem 11449 . . . . . 6 ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2523, 24syl 17 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2625, 14remulcld 11164 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
27 i1ff 25593 . . . . . 6 ( ∈ dom ∫1:ℝ⟶ℝ)
2827ad2antlr 727 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ℝ)
2928ffvelcdmda 7022 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
3026, 29ifcld 4525 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ ℝ)
3130fmpttd 7053 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶ℝ)
32 fzfi 13897 . . . . 5 (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin
33 ovex 7386 . . . . . . 7 ((𝑡 − 1) · (𝑣 / 3)) ∈ V
34 eqid 2729 . . . . . . 7 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) = (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
3533, 34fnmpti 6629 . . . . . 6 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
36 dffn4 6746 . . . . . 6 ((𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
3735, 36mpbi 230 . . . . 5 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
38 fofi 9220 . . . . 5 (((0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin ∧ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) → ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin)
3932, 37, 38mp2an 692 . . . 4 ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin
40 i1frn 25594 . . . . 5 ( ∈ dom ∫1 → ran ∈ Fin)
4140ad2antlr 727 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ∈ Fin)
42 unfi 9095 . . . 4 ((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin ∧ ran ∈ Fin) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
4339, 41, 42sylancr 587 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
44 0zd 12501 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ∈ ℤ)
4527frnd 6664 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ⊆ ℝ)
46 i1f0rn 25599 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → 0 ∈ ran )
47 elex2 2805 . . . . . . . . . . . . . . . . . 18 (0 ∈ ran → ∃𝑥 𝑥 ∈ ran )
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ∃𝑥 𝑥 ∈ ran )
49 n0 4306 . . . . . . . . . . . . . . . . 17 (ran ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ran )
5048, 49sylibr 234 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ≠ ∅)
51 fimaxre2 12088 . . . . . . . . . . . . . . . . 17 ((ran ⊆ ℝ ∧ ran ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
5245, 40, 51syl2anc 584 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
53 suprcl 12103 . . . . . . . . . . . . . . . 16 ((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) → sup(ran , ℝ, < ) ∈ ℝ)
5445, 50, 52, 53syl3anc 1373 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → sup(ran , ℝ, < ) ∈ ℝ)
5554ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → sup(ran , ℝ, < ) ∈ ℝ)
5655, 14, 20redivcld 11970 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ)
57 peano2re 11307 . . . . . . . . . . . . 13 ((sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
5856, 57syl 17 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
59 ceicl 13763 . . . . . . . . . . . 12 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
6058, 59syl 17 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
6160adantr 480 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
6221flcld 13720 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
6362adantr 480 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
64 3nn 12225 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
65 nnrp 12923 . . . . . . . . . . . . . . . . 17 (3 ∈ ℕ → 3 ∈ ℝ+)
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
67 rpdivcl 12938 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑣 / 3) ∈ ℝ+)
6866, 67mpan2 691 . . . . . . . . . . . . . . 15 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ+)
6968ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
701ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
7170ffvelcdmda 7022 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
72 elrege0 13375 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
7371, 72sylib 218 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
7473simprd 495 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
756, 69, 74divge0d 12995 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) / (𝑣 / 3)))
76 flge0nn0 13742 . . . . . . . . . . . . 13 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) / (𝑣 / 3))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
7721, 75, 76syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
7877nn0ge0d 12466 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
7978adantr 480 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
8045, 50, 523jca 1128 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
8180ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
82 ffn 6656 . . . . . . . . . . . . . . . . . 18 (:ℝ⟶ℝ → Fn ℝ)
8327, 82syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 Fn ℝ)
84 dffn3 6668 . . . . . . . . . . . . . . . . 17 ( Fn ℝ ↔ :ℝ⟶ran )
8583, 84sylib 218 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1:ℝ⟶ran )
8685ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ran )
8786ffvelcdmda 7022 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ran )
88 suprub 12104 . . . . . . . . . . . . . 14 (((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) ∧ (𝑥) ∈ ran ) → (𝑥) ≤ sup(ran , ℝ, < ))
8981, 87, 88syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ≤ sup(ran , ℝ, < ))
90 letr 11228 . . . . . . . . . . . . . . 15 (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ ∧ (𝑥) ∈ ℝ ∧ sup(ran , ℝ, < ) ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
9126, 29, 55, 90syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
9225, 55, 69lemuldivd 13004 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3))))
93 1red 11135 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
9423, 93, 56lesubaddd 11735 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9592, 94bitrd 279 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
96 ceige 13766 . . . . . . . . . . . . . . . . 17 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9758, 96syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9860zred 12598 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ)
99 letr 11228 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ ∧ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10023, 58, 98, 99syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10197, 100mpan2d 694 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10295, 101sylbid 240 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10391, 102syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10489, 103mpan2d 694 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
105104adantrd 491 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
106105imp 406 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
10744, 61, 63, 79, 106elfzd 13436 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
108 eqid 2729 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))
109 oveq1 7360 . . . . . . . . . . 11 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → (𝑡 − 1) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
110109oveq1d 7368 . . . . . . . . . 10 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → ((𝑡 − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))
111110rspceeqv 3602 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∧ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
112107, 108, 111sylancl 586 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
113 ovex 7386 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V
11434elrnmpt 5904 . . . . . . . . 9 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))))
115113, 114ax-mp 5 . . . . . . . 8 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
116112, 115sylibr 234 . . . . . . 7 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
117 elun1 4135 . . . . . . 7 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
118116, 117syl 17 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
119 elun2 4136 . . . . . . . 8 ((𝑥) ∈ ran → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
12087, 119syl 17 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
121120adantr 480 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
122118, 121ifclda 4514 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
123122fmpttd 7053 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
124123frnd 6664 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
125 ssfi 9097 . . 3 (((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin ∧ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran )) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
12643, 124, 125syl2anc 584 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
127 eqid 2729 . . . . 5 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
128127mptpreima 6191 . . . 4 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}}
129 unrab 4268 . . . . 5 ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}) = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
130 inrab 4269 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) = {𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)}
131130ineq1i 4169 . . . . . . 7 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
132 inrab 4269 . . . . . . 7 ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
133131, 132eqtri 2752 . . . . . 6 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
134 unrab 4268 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) = {𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)}
135134ineq1i 4169 . . . . . . 7 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
136 inrab 4269 . . . . . . 7 ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
137135, 136eqtri 2752 . . . . . 6 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
138133, 137uneq12i 4119 . . . . 5 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) = ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))})
139 eqcom 2736 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
140 fvex 6839 . . . . . . . . 9 (𝑥) ∈ V
141113, 140ifex 4529 . . . . . . . 8 if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ V
142141elsn 4594 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡)
143 ianor 983 . . . . . . . . . . 11 (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0))
144 nne 2929 . . . . . . . . . . . 12 (¬ (𝑥) ≠ 0 ↔ (𝑥) = 0)
145144orbi2i 912 . . . . . . . . . . 11 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0))
146143, 145bitr2i 276 . . . . . . . . . 10 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ↔ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
147146anbi1i 624 . . . . . . . . 9 (((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)) ↔ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥)))
148147orbi2i 912 . . . . . . . 8 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
149 eqif 4520 . . . . . . . 8 (𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
150148, 149bitr4i 278 . . . . . . 7 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ 𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
151139, 142, 1503bitr4i 303 . . . . . 6 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))))
152151rabbii 3402 . . . . 5 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
153129, 138, 1523eqtr4ri 2763 . . . 4 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
154128, 153eqtri 2752 . . 3 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
155 eldifi 4084 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))))
15631frnd 6664 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ ℝ)
157156sseld 3936 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) → 𝑡 ∈ ℝ))
158155, 157syl5 34 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ℝ))
159158imdistani 568 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
160 rabiun 37572 . . . . . . . . . 10 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
161 cnvimarndm 6038 . . . . . . . . . . . . . 14 ( “ ran ) = dom
162 iunid 5012 . . . . . . . . . . . . . . . 16 𝑡 ∈ ran {𝑡} = ran
163162imaeq2i 6013 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = ( “ ran )
164 imaiun 7185 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = 𝑡 ∈ ran ( “ {𝑡})
165163, 164eqtr3i 2754 . . . . . . . . . . . . . 14 ( “ ran ) = 𝑡 ∈ ran ( “ {𝑡})
166161, 165eqtr3i 2754 . . . . . . . . . . . . 13 dom = 𝑡 ∈ ran ( “ {𝑡})
16727fdmd 6666 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → dom = ℝ)
168166, 167eqtr3id 2778 . . . . . . . . . . . 12 ( ∈ dom ∫1 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
169168ad2antlr 727 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
170 rabeq 3411 . . . . . . . . . . 11 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
171169, 170syl 17 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
172160, 171eqtr3id 2778 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
173 fniniseg 6998 . . . . . . . . . . . . . . . . . 18 ( Fn ℝ → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
17427, 82, 1733syl 18 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
175174simplbda 499 . . . . . . . . . . . . . . . 16 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (𝑥) = 𝑡)
176175breq2d 5107 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
177176rabbidva 3403 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
178 inrab2 4270 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
179 imassrn 6026 . . . . . . . . . . . . . . . . . 18 ( “ {𝑡}) ⊆ ran
180 dfdm4 5842 . . . . . . . . . . . . . . . . . . 19 dom = ran
181180, 167eqtr3id 2778 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → ran = ℝ)
182179, 181sseqtrid 3980 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ( “ {𝑡}) ⊆ ℝ)
183 sseqin2 4176 . . . . . . . . . . . . . . . . 17 (( “ {𝑡}) ⊆ ℝ ↔ (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
184182, 183sylib 218 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
185 rabeq 3411 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
186184, 185syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
187178, 186eqtrid 2776 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
188177, 187eqtr4d 2767 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
189188ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
19025adantlr 715 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
19145ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ⊆ ℝ)
192191sselda 3937 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → 𝑡 ∈ ℝ)
193192adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
19468ad3antlr 731 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
195190, 193, 194lemuldivd 13004 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3))))
19623adantlr 715 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
197 1red 11135 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
19813ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
19919ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
200193, 198, 199redivcld 11970 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
201196, 197, 200lesubaddd 11735 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1)))
2026adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
203 peano2re 11307 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 / (𝑣 / 3)) ∈ ℝ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
204200, 203syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
205 reflcl 13718 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
207 peano2re 11307 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
209202, 208, 194ltdivmuld 13006 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
21021adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
211 flflp1 13729 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
212210, 204, 211syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
213198, 208remulcld 11164 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ)
214213rexrd 11184 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ*)
215 elioomnf 13365 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
216214, 215syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
217202biantrurd 532 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
218216, 217bitr4d 282 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
219209, 212, 2183bitr4d 311 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
220195, 201, 2193bitrd 305 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
221220rabbidva 3403 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
2221feqmptd 6895 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
223222cnveqd 5822 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
224223imaeq1d 6014 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
225 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
226225mptpreima 6191 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}
227224, 226eqtrdi 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
228227ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
229221, 228eqtr4d 2767 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
230 itg2addnc.f1 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
231 mbfima 25547 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
232230, 4, 231syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
233232ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
234229, 233eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
23545sseld 3936 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (𝑡 ∈ ran 𝑡 ∈ ℝ))
236235ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran 𝑡 ∈ ℝ))
237236imdistani 568 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
238 i1fmbf 25592 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 ∈ MblFn)
239238, 27jca 511 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ( ∈ MblFn ∧ :ℝ⟶ℝ))
240239ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ( ∈ MblFn ∧ :ℝ⟶ℝ))
241 mbfimasn 25549 . . . . . . . . . . . . . . . 16 (( ∈ MblFn ∧ :ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
2422413expa 1118 . . . . . . . . . . . . . . 15 ((( ∈ MblFn ∧ :ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
243240, 242sylan 580 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
244237, 243syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ( “ {𝑡}) ∈ dom vol)
245 inmbl 25459 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
246234, 244, 245syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
247189, 246eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
248247ralrimiva 3121 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
249 finiunmbl 25461 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
25041, 248, 249syl2anc 584 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
251172, 250eqeltrrd 2829 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
252 unrab 4268 . . . . . . . . . . 11 ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}) = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))}
25327feqmptd 6895 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
254253cnveqd 5822 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
255254imaeq1d 6014 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)))
256 eqid 2729 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥)) = (𝑥 ∈ ℝ ↦ (𝑥))
257256mptpreima 6191 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)}
258255, 257eqtrdi 2780 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)})
259254imaeq1d 6014 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)))
260256mptpreima 6191 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}
261259, 260eqtrdi 2780 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)})
262258, 261uneq12d 4122 . . . . . . . . . . 11 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}))
26327ffvelcdmda 7022 . . . . . . . . . . . . 13 (( ∈ dom ∫1𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
264 0re 11136 . . . . . . . . . . . . . . 15 0 ∈ ℝ
265 lttri2 11216 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
266264, 265mpan2 691 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
267 ibar 528 . . . . . . . . . . . . . . 15 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥)))))
268 andi 1009 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
269 0xr 11181 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
270 elioomnf 13365 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (-∞(,)0) ↔ ((𝑥) ∈ ℝ ∧ (𝑥) < 0)))
271 elioopnf 13364 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (0(,)+∞) ↔ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
272270, 271orbi12d 918 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥)))))
273269, 272ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
274268, 273bitr4i 278 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)))
275267, 274bitrdi 287 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
276266, 275bitrd 279 . . . . . . . . . . . . 13 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
277263, 276syl 17 . . . . . . . . . . . 12 (( ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
278277rabbidva 3403 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))})
279252, 262, 2783eqtr4a 2790 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0})
280 i1fima 25595 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (-∞(,)0)) ∈ dom vol)
281 i1fima 25595 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (0(,)+∞)) ∈ dom vol)
282 unmbl 25454 . . . . . . . . . . 11 ((( “ (-∞(,)0)) ∈ dom vol ∧ ( “ (0(,)+∞)) ∈ dom vol) → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
283280, 281, 282syl2anc 584 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
284279, 283eqeltrrd 2829 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
285284ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
286 inmbl 25459 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
287251, 285, 286syl2anc 584 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
288287adantr 480 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
28923recnd 11162 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
290289adantlr 715 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
291 1cnd 11129 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
292 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
29313ad3antlr 731 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
29419ad3antlr 731 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
295292, 293, 294redivcld 11970 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
296295recnd 11162 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℂ)
297290, 291, 296subadd2d 11512 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
298 eqcom 2736 . . . . . . . . . 10 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ (𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
299 recn 11118 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
300299ad2antlr 727 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℂ)
30125recnd 11162 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
302301adantlr 715 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
30313recnd 11162 . . . . . . . . . . . 12 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℂ)
304303ad3antlr 731 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℂ)
305300, 302, 304, 294divmul3d 11952 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
306298, 305bitrid 283 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
307297, 306bitr3d 281 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
308307rabbidva 3403 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
309 imaundi 6102 . . . . . . . . . . 11 (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
310223ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
311 zre 12493 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
312311adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
31313ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ)
314312, 313remulcld 11164 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ)
315314rexrd 11184 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ*)
316 peano2z 12534 . . . . . . . . . . . . . . . . 17 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℤ)
317316zred 12598 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
318317adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
319313, 318remulcld 11164 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
320319rexrd 11184 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*)
321 zcn 12494 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
322321adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
323303ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℂ)
324322, 323mulcomd 11155 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) = ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)))
32568ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
326311ltp1d 12073 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
327326adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
328312, 318, 325, 327ltmul2dd 13011 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
329324, 328eqbrtrd 5117 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
330 snunioo 13399 . . . . . . . . . . . . 13 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ* ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ* ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
331315, 320, 329, 330syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
332310, 331imaeq12d 6016 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
333309, 332eqtr3id 2778 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
334225mptpreima 6191 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))}
3354ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
336335ffvelcdmda 7022 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3373363biant1d 1480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
338337adantr 480 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
339311adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
340336adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹𝑥) ∈ ℝ)
34168ad4antlr 733 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
342339, 340, 341lemuldivd 13004 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3))))
343317adantl 481 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
344340, 343, 341ltdivmuld 13006 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
345344bicomd 223 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ↔ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))
346342, 345anbi12d 632 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
347338, 346bitr3d 281 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
348 elico2 13331 . . . . . . . . . . . . . . . 16 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
349314, 320, 348syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
350349adantlr 715 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
351 eqcom 2736 . . . . . . . . . . . . . . 15 (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1))
35221adantlr 715 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
353 flbi 13738 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
354352, 353sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
355351, 354bitrid 283 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
356347, 350, 3553bitr4d 311 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
357356an32s 652 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
358357rabbidva 3403 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))} = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
359334, 358eqtrid 2776 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
360333, 359eqtrd 2764 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
361230ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 ∈ MblFn)
3624ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹:ℝ⟶ℝ)
363 mbfimasn 25549 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
364361, 362, 314, 363syl3anc 1373 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
365 mbfima 25547 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
366230, 4, 365syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
367366ad4antr 732 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
368 unmbl 25454 . . . . . . . . . 10 (((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
369364, 367, 368syl2anc 584 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
370360, 369eqeltrrd 2829 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
371 simpr 484 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
372352flcld 13720 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
373372adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
374371, 373eqeltrd 2828 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ)
375374stoic1a 1772 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
376375an32s 652 . . . . . . . . . . 11 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
377376ralrimiva 3121 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
378 rabeq0 4341 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
379377, 378sylibr 234 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅)
380 0mbl 25456 . . . . . . . . 9 ∅ ∈ dom vol
381379, 380eqeltrdi 2836 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
382370, 381pm2.61dan 812 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
383308, 382eqeltrrd 2829 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol)
384 inmbl 25459 . . . . . 6 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
385288, 383, 384syl2anc 584 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
386 rabiun 37572 . . . . . . . . . . 11 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
387 rabeq 3411 . . . . . . . . . . . 12 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
388168, 387syl 17 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
389386, 388eqtr3id 2778 . . . . . . . . . 10 ( ∈ dom ∫1 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
390389ad2antlr 727 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
391176notbid 318 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
392391rabbidva 3403 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
393 inrab2 4270 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
394 rabeq 3411 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
395184, 394syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
396393, 395eqtrid 2776 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
397392, 396eqtr4d 2767 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
398397ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
399 imaundi 6102 . . . . . . . . . . . . . . . . 17 (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)))
40013, 19jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 ∈ ℝ+ → ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0))
401 redivcl 11861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ (𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
4024013expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0)) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
403400, 402sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ+) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
404403ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
405404adantll 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
406405, 203syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
407 peano2re 11307 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
408 reflcl 13718 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
409406, 407, 4083syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
41013ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
411409, 410remulcld 11164 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
412411rexrd 11184 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ*)
413 pnfxr 11188 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
414413a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → +∞ ∈ ℝ*)
415 ltpnf 13040 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
416411, 415syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
417 snunioo 13399 . . . . . . . . . . . . . . . . . . 19 ((((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
418412, 414, 416, 417syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
419418imaeq2d 6015 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
420399, 419eqtr3id 2778 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
421223imaeq1d 6014 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
422225mptpreima 6191 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)}
423421, 422eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
424423ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
425406, 407syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
426425adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
427 flflp1 13729 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ ∧ ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
428426, 352, 427syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
429411adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
430 elicopnf 13366 . . . . . . . . . . . . . . . . . . . . . 22 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
431429, 430syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
432336biantrurd 532 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
433409adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
43468ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
435433, 336, 434lemuldivd 13004 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
436431, 432, 4353bitr2d 307 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
437406adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
438352, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
439 1red 11135 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
440437, 438, 439ltadd1d 11731 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
441428, 436, 4403bitr4d 311 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
442295, 439, 438ltaddsubd 11738 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
443441, 442bitrd 279 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
444438, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
445292, 444, 434ltdivmul2d 13007 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
446444, 293remulcld 11164 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
447292, 446ltnled 11281 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
448443, 445, 4473bitrd 305 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
449448rabbidva 3403 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
450420, 424, 4493eqtrd 2768 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
451230ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹 ∈ MblFn)
452 mbfimasn 25549 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
453451, 335, 411, 452syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
454 mbfima 25547 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
455230, 4, 454syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
456455ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
457 unmbl 25454 . . . . . . . . . . . . . . . 16 (((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
458453, 456, 457syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
459450, 458eqeltrrd 2829 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
460237, 459syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
461 inmbl 25459 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
462460, 244, 461syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
463398, 462eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
464463ralrimiva 3121 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
465 finiunmbl 25461 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
46641, 464, 465syl2anc 584 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
467390, 466eqeltrrd 2829 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
468254imaeq1d 6014 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}))
469256mptpreima 6191 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}
470140elsn 4594 . . . . . . . . . . . . 13 ((𝑥) ∈ {0} ↔ (𝑥) = 0)
471470rabbii 3402 . . . . . . . . . . . 12 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}} = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
472469, 471eqtri 2752 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
473468, 472eqtrdi 2780 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0})
474 i1fima 25595 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) ∈ dom vol)
475473, 474eqeltrrd 2829 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
476475ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
477 unmbl 25454 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
478467, 476, 477syl2anc 584 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
479478adantr 480 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
480254imaeq1d 6014 . . . . . . . . 9 ( ∈ dom ∫1 → ( “ {𝑡}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}))
481256mptpreima 6191 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}}
482140elsn 4594 . . . . . . . . . . . 12 ((𝑥) ∈ {𝑡} ↔ (𝑥) = 𝑡)
483 eqcom 2736 . . . . . . . . . . . 12 ((𝑥) = 𝑡𝑡 = (𝑥))
484482, 483bitri 275 . . . . . . . . . . 11 ((𝑥) ∈ {𝑡} ↔ 𝑡 = (𝑥))
485484rabbii 3402 . . . . . . . . . 10 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
486481, 485eqtri 2752 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
487480, 486eqtrdi 2780 . . . . . . . 8 ( ∈ dom ∫1 → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
488487ad3antlr 731 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
489488, 243eqeltrrd 2829 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol)
490 inmbl 25459 . . . . . 6 ((({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
491479, 489, 490syl2anc 584 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
492 unmbl 25454 . . . . 5 (((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol ∧ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
493385, 491, 492syl2anc 584 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
494159, 493syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
495154, 494eqeltrid 2832 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol)
496 mblvol 25447 . . . 4 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
497495, 496syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
498 eldifsn 4740 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) ↔ (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0))
499157anim1d 611 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ((𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
500498, 499biimtrid 242 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
501500imdistani 568 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
502128a1i 11 . . . . . . . . . . 11 ( ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}})
503468, 469eqtrdi 2780 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}})
504502, 503ineq12d 4174 . . . . . . . . . 10 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}))
505 inrab 4269 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})}
506504, 505eqtrdi 2780 . . . . . . . . 9 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
507506ad3antlr 731 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
508144biimpri 228 . . . . . . . . . . . . . . . . . 18 ((𝑥) = 0 → ¬ (𝑥) ≠ 0)
509508intnand 488 . . . . . . . . . . . . . . . . 17 ((𝑥) = 0 → ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
510509iffalsed 4489 . . . . . . . . . . . . . . . 16 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥))
511 eqtr 2749 . . . . . . . . . . . . . . . 16 ((if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
512510, 511mpancom 688 . . . . . . . . . . . . . . 15 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
513512adantl 481 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
514 simpll 766 . . . . . . . . . . . . . . 15 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 𝑡 ≠ 0)
515514necomd 2980 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 0 ≠ 𝑡)
516513, 515eqnetrd 2992 . . . . . . . . . . . . 13 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
517516ex 412 . . . . . . . . . . . 12 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
518 orcom 870 . . . . . . . . . . . . . 14 ((¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
519 ianor 983 . . . . . . . . . . . . . 14 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}))
520 imor 853 . . . . . . . . . . . . . 14 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
521518, 519, 5203bitr4i 303 . . . . . . . . . . . . 13 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
522142necon3bbii 2972 . . . . . . . . . . . . . 14 (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
523470, 522imbi12i 350 . . . . . . . . . . . . 13 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
524521, 523bitri 275 . . . . . . . . . . . 12 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
525517, 524sylibr 234 . . . . . . . . . . 11 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
526525ralrimiva 3121 . . . . . . . . . 10 (𝑡 ≠ 0 → ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
527 rabeq0 4341 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
528526, 527sylibr 234 . . . . . . . . 9 (𝑡 ≠ 0 → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
529528ad2antll 729 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
530507, 529eqtrd 2764 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅)
531 imassrn 6026 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
532 dfdm4 5842 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
533141, 127dmmpti 6630 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
534532, 533eqtr3i 2754 . . . . . . . . 9 ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
535531, 534sseqtri 3986 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ
536 reldisj 4406 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ → ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0}))))
537535, 536ax-mp 5 . . . . . . 7 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
538530, 537sylib 218 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
539 ffun 6659 . . . . . . . . . 10 (:ℝ⟶ℝ → Fun )
540 difpreima 7003 . . . . . . . . . 10 (Fun → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
541539, 540syl 17 . . . . . . . . 9 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
542 fdm 6665 . . . . . . . . . . 11 (:ℝ⟶ℝ → dom = ℝ)
543161, 542eqtrid 2776 . . . . . . . . . 10 (:ℝ⟶ℝ → ( “ ran ) = ℝ)
544543difeq1d 4078 . . . . . . . . 9 (:ℝ⟶ℝ → (( “ ran ) ∖ ( “ {0})) = (ℝ ∖ ( “ {0})))
545541, 544eqtrd 2764 . . . . . . . 8 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
54627, 545syl 17 . . . . . . 7 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
547546ad3antlr 731 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
548538, 547sseqtrrd 3975 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})))
549 imassrn 6026 . . . . . . 7 ( “ (ran ∖ {0})) ⊆ ran
550549, 181sseqtrid 3980 . . . . . 6 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ⊆ ℝ)
551550ad3antlr 731 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) ⊆ ℝ)
552 i1fima 25595 . . . . . . . 8 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ∈ dom vol)
553 mblvol 25447 . . . . . . . 8 (( “ (ran ∖ {0})) ∈ dom vol → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
554552, 553syl 17 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
555 neldifsn 4746 . . . . . . . 8 ¬ 0 ∈ (ran ∖ {0})
556 i1fima2 25596 . . . . . . . 8 (( ∈ dom ∫1 ∧ ¬ 0 ∈ (ran ∖ {0})) → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
557555, 556mpan2 691 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
558554, 557eqeltrrd 2829 . . . . . 6 ( ∈ dom ∫1 → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
559558ad3antlr 731 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
560 ovolsscl 25403 . . . . 5 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})) ∧ ( “ (ran ∖ {0})) ⊆ ℝ ∧ (vol*‘( “ (ran ∖ {0}))) ∈ ℝ) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
561548, 551, 559, 560syl3anc 1373 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
562501, 561syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
563497, 562eqeltrd 2828 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
56431, 126, 495, 563i1fd 25598 1 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  ifcif 4478  {csn 4579   ciun 4944   class class class wbr 5095  cmpt 5176  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  Fincfn 8879  supcsup 9349  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  3c3 12202  0cn0 12402  cz 12489  +crp 12911  (,)cioo 13266  [,)cico 13268  ...cfz 13428  cfl 13712  vol*covol 25379  volcvol 25380  MblFncmbf 25531  1citg1 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537
This theorem is referenced by:  itg2addnclem3  37652
  Copyright terms: Public domain W3C validator