Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnclem2 Structured version   Visualization version   GIF version

Theorem itg2addnclem2 37673
Description: Lemma for itg2addnc 37675. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
itg2addnclem2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Distinct variable groups:   𝑥,𝑣,,𝐹   𝜑,𝑣,𝑥,

Proof of Theorem itg2addnclem2
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2addnc.f2 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 rge0ssre 13424 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
3 fss 6707 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
41, 2, 3sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
54ad2antrr 726 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
65ffvelcdmda 7059 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
7 rpre 12967 . . . . . . . . . 10 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
8 3re 12273 . . . . . . . . . . 11 3 ∈ ℝ
9 3ne0 12299 . . . . . . . . . . 11 3 ≠ 0
108, 9pm3.2i 470 . . . . . . . . . 10 (3 ∈ ℝ ∧ 3 ≠ 0)
11 redivcl 11908 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (𝑣 / 3) ∈ ℝ)
12113expb 1120 . . . . . . . . . 10 ((𝑣 ∈ ℝ ∧ (3 ∈ ℝ ∧ 3 ≠ 0)) → (𝑣 / 3) ∈ ℝ)
137, 10, 12sylancl 586 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ)
1413ad2antlr 727 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
15 rpcnne0 12977 . . . . . . . . . 10 (𝑣 ∈ ℝ+ → (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
16 3cn 12274 . . . . . . . . . . 11 3 ∈ ℂ
1716, 9pm3.2i 470 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 ≠ 0)
18 divne0 11856 . . . . . . . . . 10 (((𝑣 ∈ ℂ ∧ 𝑣 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (𝑣 / 3) ≠ 0)
1915, 17, 18sylancl 586 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ≠ 0)
2019ad2antlr 727 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
216, 14, 20redivcld 12017 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
22 reflcl 13765 . . . . . . 7 (((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
2321, 22syl 17 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
24 peano2rem 11496 . . . . . 6 ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2523, 24syl 17 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2625, 14remulcld 11211 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
27 i1ff 25584 . . . . . 6 ( ∈ dom ∫1:ℝ⟶ℝ)
2827ad2antlr 727 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ℝ)
2928ffvelcdmda 7059 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
3026, 29ifcld 4538 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ ℝ)
3130fmpttd 7090 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶ℝ)
32 fzfi 13944 . . . . 5 (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin
33 ovex 7423 . . . . . . 7 ((𝑡 − 1) · (𝑣 / 3)) ∈ V
34 eqid 2730 . . . . . . 7 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) = (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
3533, 34fnmpti 6664 . . . . . 6 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
36 dffn4 6781 . . . . . 6 ((𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
3735, 36mpbi 230 . . . . 5 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
38 fofi 9269 . . . . 5 (((0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin ∧ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) → ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin)
3932, 37, 38mp2an 692 . . . 4 ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin
40 i1frn 25585 . . . . 5 ( ∈ dom ∫1 → ran ∈ Fin)
4140ad2antlr 727 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ∈ Fin)
42 unfi 9141 . . . 4 ((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin ∧ ran ∈ Fin) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
4339, 41, 42sylancr 587 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
44 0zd 12548 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ∈ ℤ)
4527frnd 6699 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ⊆ ℝ)
46 i1f0rn 25590 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → 0 ∈ ran )
47 elex2 2806 . . . . . . . . . . . . . . . . . 18 (0 ∈ ran → ∃𝑥 𝑥 ∈ ran )
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ∃𝑥 𝑥 ∈ ran )
49 n0 4319 . . . . . . . . . . . . . . . . 17 (ran ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ran )
5048, 49sylibr 234 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ≠ ∅)
51 fimaxre2 12135 . . . . . . . . . . . . . . . . 17 ((ran ⊆ ℝ ∧ ran ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
5245, 40, 51syl2anc 584 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
53 suprcl 12150 . . . . . . . . . . . . . . . 16 ((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) → sup(ran , ℝ, < ) ∈ ℝ)
5445, 50, 52, 53syl3anc 1373 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → sup(ran , ℝ, < ) ∈ ℝ)
5554ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → sup(ran , ℝ, < ) ∈ ℝ)
5655, 14, 20redivcld 12017 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ)
57 peano2re 11354 . . . . . . . . . . . . 13 ((sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
5856, 57syl 17 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
59 ceicl 13810 . . . . . . . . . . . 12 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
6058, 59syl 17 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
6160adantr 480 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
6221flcld 13767 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
6362adantr 480 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
64 3nn 12272 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
65 nnrp 12970 . . . . . . . . . . . . . . . . 17 (3 ∈ ℕ → 3 ∈ ℝ+)
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
67 rpdivcl 12985 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑣 / 3) ∈ ℝ+)
6866, 67mpan2 691 . . . . . . . . . . . . . . 15 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ+)
6968ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
701ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
7170ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
72 elrege0 13422 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
7371, 72sylib 218 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
7473simprd 495 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
756, 69, 74divge0d 13042 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) / (𝑣 / 3)))
76 flge0nn0 13789 . . . . . . . . . . . . 13 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) / (𝑣 / 3))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
7721, 75, 76syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
7877nn0ge0d 12513 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
7978adantr 480 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
8045, 50, 523jca 1128 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
8180ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
82 ffn 6691 . . . . . . . . . . . . . . . . . 18 (:ℝ⟶ℝ → Fn ℝ)
8327, 82syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 Fn ℝ)
84 dffn3 6703 . . . . . . . . . . . . . . . . 17 ( Fn ℝ ↔ :ℝ⟶ran )
8583, 84sylib 218 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1:ℝ⟶ran )
8685ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ran )
8786ffvelcdmda 7059 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ran )
88 suprub 12151 . . . . . . . . . . . . . 14 (((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) ∧ (𝑥) ∈ ran ) → (𝑥) ≤ sup(ran , ℝ, < ))
8981, 87, 88syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ≤ sup(ran , ℝ, < ))
90 letr 11275 . . . . . . . . . . . . . . 15 (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ ∧ (𝑥) ∈ ℝ ∧ sup(ran , ℝ, < ) ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
9126, 29, 55, 90syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
9225, 55, 69lemuldivd 13051 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3))))
93 1red 11182 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
9423, 93, 56lesubaddd 11782 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9592, 94bitrd 279 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
96 ceige 13813 . . . . . . . . . . . . . . . . 17 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9758, 96syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9860zred 12645 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ)
99 letr 11275 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ ∧ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10023, 58, 98, 99syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10197, 100mpan2d 694 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10295, 101sylbid 240 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10391, 102syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10489, 103mpan2d 694 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
105104adantrd 491 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
106105imp 406 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
10744, 61, 63, 79, 106elfzd 13483 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
108 eqid 2730 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))
109 oveq1 7397 . . . . . . . . . . 11 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → (𝑡 − 1) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
110109oveq1d 7405 . . . . . . . . . 10 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → ((𝑡 − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))
111110rspceeqv 3614 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∧ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
112107, 108, 111sylancl 586 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
113 ovex 7423 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V
11434elrnmpt 5925 . . . . . . . . 9 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))))
115113, 114ax-mp 5 . . . . . . . 8 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
116112, 115sylibr 234 . . . . . . 7 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
117 elun1 4148 . . . . . . 7 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
118116, 117syl 17 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
119 elun2 4149 . . . . . . . 8 ((𝑥) ∈ ran → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
12087, 119syl 17 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
121120adantr 480 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
122118, 121ifclda 4527 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
123122fmpttd 7090 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
124123frnd 6699 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
125 ssfi 9143 . . 3 (((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin ∧ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran )) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
12643, 124, 125syl2anc 584 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
127 eqid 2730 . . . . 5 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
128127mptpreima 6214 . . . 4 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}}
129 unrab 4281 . . . . 5 ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}) = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
130 inrab 4282 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) = {𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)}
131130ineq1i 4182 . . . . . . 7 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
132 inrab 4282 . . . . . . 7 ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
133131, 132eqtri 2753 . . . . . 6 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
134 unrab 4281 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) = {𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)}
135134ineq1i 4182 . . . . . . 7 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
136 inrab 4282 . . . . . . 7 ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
137135, 136eqtri 2753 . . . . . 6 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
138133, 137uneq12i 4132 . . . . 5 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) = ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))})
139 eqcom 2737 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
140 fvex 6874 . . . . . . . . 9 (𝑥) ∈ V
141113, 140ifex 4542 . . . . . . . 8 if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ V
142141elsn 4607 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡)
143 ianor 983 . . . . . . . . . . 11 (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0))
144 nne 2930 . . . . . . . . . . . 12 (¬ (𝑥) ≠ 0 ↔ (𝑥) = 0)
145144orbi2i 912 . . . . . . . . . . 11 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0))
146143, 145bitr2i 276 . . . . . . . . . 10 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ↔ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
147146anbi1i 624 . . . . . . . . 9 (((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)) ↔ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥)))
148147orbi2i 912 . . . . . . . 8 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
149 eqif 4533 . . . . . . . 8 (𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
150148, 149bitr4i 278 . . . . . . 7 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ 𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
151139, 142, 1503bitr4i 303 . . . . . 6 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))))
152151rabbii 3414 . . . . 5 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
153129, 138, 1523eqtr4ri 2764 . . . 4 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
154128, 153eqtri 2753 . . 3 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
155 eldifi 4097 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))))
15631frnd 6699 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ ℝ)
157156sseld 3948 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) → 𝑡 ∈ ℝ))
158155, 157syl5 34 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ℝ))
159158imdistani 568 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
160 rabiun 37594 . . . . . . . . . 10 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
161 cnvimarndm 6057 . . . . . . . . . . . . . 14 ( “ ran ) = dom
162 iunid 5027 . . . . . . . . . . . . . . . 16 𝑡 ∈ ran {𝑡} = ran
163162imaeq2i 6032 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = ( “ ran )
164 imaiun 7222 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = 𝑡 ∈ ran ( “ {𝑡})
165163, 164eqtr3i 2755 . . . . . . . . . . . . . 14 ( “ ran ) = 𝑡 ∈ ran ( “ {𝑡})
166161, 165eqtr3i 2755 . . . . . . . . . . . . 13 dom = 𝑡 ∈ ran ( “ {𝑡})
16727fdmd 6701 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → dom = ℝ)
168166, 167eqtr3id 2779 . . . . . . . . . . . 12 ( ∈ dom ∫1 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
169168ad2antlr 727 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
170 rabeq 3423 . . . . . . . . . . 11 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
171169, 170syl 17 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
172160, 171eqtr3id 2779 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
173 fniniseg 7035 . . . . . . . . . . . . . . . . . 18 ( Fn ℝ → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
17427, 82, 1733syl 18 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
175174simplbda 499 . . . . . . . . . . . . . . . 16 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (𝑥) = 𝑡)
176175breq2d 5122 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
177176rabbidva 3415 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
178 inrab2 4283 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
179 imassrn 6045 . . . . . . . . . . . . . . . . . 18 ( “ {𝑡}) ⊆ ran
180 dfdm4 5862 . . . . . . . . . . . . . . . . . . 19 dom = ran
181180, 167eqtr3id 2779 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → ran = ℝ)
182179, 181sseqtrid 3992 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ( “ {𝑡}) ⊆ ℝ)
183 sseqin2 4189 . . . . . . . . . . . . . . . . 17 (( “ {𝑡}) ⊆ ℝ ↔ (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
184182, 183sylib 218 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
185 rabeq 3423 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
186184, 185syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
187178, 186eqtrid 2777 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
188177, 187eqtr4d 2768 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
189188ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
19025adantlr 715 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
19145ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ⊆ ℝ)
192191sselda 3949 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → 𝑡 ∈ ℝ)
193192adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
19468ad3antlr 731 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
195190, 193, 194lemuldivd 13051 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3))))
19623adantlr 715 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
197 1red 11182 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
19813ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
19919ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
200193, 198, 199redivcld 12017 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
201196, 197, 200lesubaddd 11782 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1)))
2026adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
203 peano2re 11354 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 / (𝑣 / 3)) ∈ ℝ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
204200, 203syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
205 reflcl 13765 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
207 peano2re 11354 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
209202, 208, 194ltdivmuld 13053 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
21021adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
211 flflp1 13776 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
212210, 204, 211syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
213198, 208remulcld 11211 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ)
214213rexrd 11231 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ*)
215 elioomnf 13412 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
216214, 215syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
217202biantrurd 532 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
218216, 217bitr4d 282 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
219209, 212, 2183bitr4d 311 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
220195, 201, 2193bitrd 305 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
221220rabbidva 3415 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
2221feqmptd 6932 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
223222cnveqd 5842 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
224223imaeq1d 6033 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
225 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
226225mptpreima 6214 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}
227224, 226eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
228227ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
229221, 228eqtr4d 2768 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
230 itg2addnc.f1 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
231 mbfima 25538 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
232230, 4, 231syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
233232ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
234229, 233eqeltrd 2829 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
23545sseld 3948 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (𝑡 ∈ ran 𝑡 ∈ ℝ))
236235ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran 𝑡 ∈ ℝ))
237236imdistani 568 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
238 i1fmbf 25583 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 ∈ MblFn)
239238, 27jca 511 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ( ∈ MblFn ∧ :ℝ⟶ℝ))
240239ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ( ∈ MblFn ∧ :ℝ⟶ℝ))
241 mbfimasn 25540 . . . . . . . . . . . . . . . 16 (( ∈ MblFn ∧ :ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
2422413expa 1118 . . . . . . . . . . . . . . 15 ((( ∈ MblFn ∧ :ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
243240, 242sylan 580 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
244237, 243syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ( “ {𝑡}) ∈ dom vol)
245 inmbl 25450 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
246234, 244, 245syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
247189, 246eqeltrd 2829 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
248247ralrimiva 3126 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
249 finiunmbl 25452 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
25041, 248, 249syl2anc 584 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
251172, 250eqeltrrd 2830 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
252 unrab 4281 . . . . . . . . . . 11 ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}) = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))}
25327feqmptd 6932 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
254253cnveqd 5842 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
255254imaeq1d 6033 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)))
256 eqid 2730 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥)) = (𝑥 ∈ ℝ ↦ (𝑥))
257256mptpreima 6214 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)}
258255, 257eqtrdi 2781 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)})
259254imaeq1d 6033 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)))
260256mptpreima 6214 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}
261259, 260eqtrdi 2781 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)})
262258, 261uneq12d 4135 . . . . . . . . . . 11 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}))
26327ffvelcdmda 7059 . . . . . . . . . . . . 13 (( ∈ dom ∫1𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
264 0re 11183 . . . . . . . . . . . . . . 15 0 ∈ ℝ
265 lttri2 11263 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
266264, 265mpan2 691 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
267 ibar 528 . . . . . . . . . . . . . . 15 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥)))))
268 andi 1009 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
269 0xr 11228 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
270 elioomnf 13412 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (-∞(,)0) ↔ ((𝑥) ∈ ℝ ∧ (𝑥) < 0)))
271 elioopnf 13411 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (0(,)+∞) ↔ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
272270, 271orbi12d 918 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥)))))
273269, 272ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
274268, 273bitr4i 278 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)))
275267, 274bitrdi 287 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
276266, 275bitrd 279 . . . . . . . . . . . . 13 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
277263, 276syl 17 . . . . . . . . . . . 12 (( ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
278277rabbidva 3415 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))})
279252, 262, 2783eqtr4a 2791 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0})
280 i1fima 25586 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (-∞(,)0)) ∈ dom vol)
281 i1fima 25586 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (0(,)+∞)) ∈ dom vol)
282 unmbl 25445 . . . . . . . . . . 11 ((( “ (-∞(,)0)) ∈ dom vol ∧ ( “ (0(,)+∞)) ∈ dom vol) → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
283280, 281, 282syl2anc 584 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
284279, 283eqeltrrd 2830 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
285284ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
286 inmbl 25450 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
287251, 285, 286syl2anc 584 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
288287adantr 480 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
28923recnd 11209 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
290289adantlr 715 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
291 1cnd 11176 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
292 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
29313ad3antlr 731 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
29419ad3antlr 731 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
295292, 293, 294redivcld 12017 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
296295recnd 11209 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℂ)
297290, 291, 296subadd2d 11559 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
298 eqcom 2737 . . . . . . . . . 10 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ (𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
299 recn 11165 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
300299ad2antlr 727 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℂ)
30125recnd 11209 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
302301adantlr 715 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
30313recnd 11209 . . . . . . . . . . . 12 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℂ)
304303ad3antlr 731 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℂ)
305300, 302, 304, 294divmul3d 11999 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
306298, 305bitrid 283 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
307297, 306bitr3d 281 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
308307rabbidva 3415 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
309 imaundi 6125 . . . . . . . . . . 11 (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
310223ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
311 zre 12540 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
312311adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
31313ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ)
314312, 313remulcld 11211 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ)
315314rexrd 11231 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ*)
316 peano2z 12581 . . . . . . . . . . . . . . . . 17 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℤ)
317316zred 12645 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
318317adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
319313, 318remulcld 11211 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
320319rexrd 11231 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*)
321 zcn 12541 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
322321adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
323303ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℂ)
324322, 323mulcomd 11202 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) = ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)))
32568ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
326311ltp1d 12120 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
327326adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
328312, 318, 325, 327ltmul2dd 13058 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
329324, 328eqbrtrd 5132 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
330 snunioo 13446 . . . . . . . . . . . . 13 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ* ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ* ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
331315, 320, 329, 330syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
332310, 331imaeq12d 6035 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
333309, 332eqtr3id 2779 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
334225mptpreima 6214 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))}
3354ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
336335ffvelcdmda 7059 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3373363biant1d 1480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
338337adantr 480 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
339311adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
340336adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹𝑥) ∈ ℝ)
34168ad4antlr 733 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
342339, 340, 341lemuldivd 13051 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3))))
343317adantl 481 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
344340, 343, 341ltdivmuld 13053 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
345344bicomd 223 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ↔ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))
346342, 345anbi12d 632 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
347338, 346bitr3d 281 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
348 elico2 13378 . . . . . . . . . . . . . . . 16 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
349314, 320, 348syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
350349adantlr 715 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
351 eqcom 2737 . . . . . . . . . . . . . . 15 (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1))
35221adantlr 715 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
353 flbi 13785 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
354352, 353sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
355351, 354bitrid 283 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
356347, 350, 3553bitr4d 311 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
357356an32s 652 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
358357rabbidva 3415 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))} = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
359334, 358eqtrid 2777 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
360333, 359eqtrd 2765 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
361230ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 ∈ MblFn)
3624ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹:ℝ⟶ℝ)
363 mbfimasn 25540 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
364361, 362, 314, 363syl3anc 1373 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
365 mbfima 25538 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
366230, 4, 365syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
367366ad4antr 732 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
368 unmbl 25445 . . . . . . . . . 10 (((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
369364, 367, 368syl2anc 584 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
370360, 369eqeltrrd 2830 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
371 simpr 484 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
372352flcld 13767 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
373372adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
374371, 373eqeltrd 2829 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ)
375374stoic1a 1772 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
376375an32s 652 . . . . . . . . . . 11 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
377376ralrimiva 3126 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
378 rabeq0 4354 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
379377, 378sylibr 234 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅)
380 0mbl 25447 . . . . . . . . 9 ∅ ∈ dom vol
381379, 380eqeltrdi 2837 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
382370, 381pm2.61dan 812 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
383308, 382eqeltrrd 2830 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol)
384 inmbl 25450 . . . . . 6 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
385288, 383, 384syl2anc 584 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
386 rabiun 37594 . . . . . . . . . . 11 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
387 rabeq 3423 . . . . . . . . . . . 12 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
388168, 387syl 17 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
389386, 388eqtr3id 2779 . . . . . . . . . 10 ( ∈ dom ∫1 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
390389ad2antlr 727 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
391176notbid 318 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
392391rabbidva 3415 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
393 inrab2 4283 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
394 rabeq 3423 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
395184, 394syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
396393, 395eqtrid 2777 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
397392, 396eqtr4d 2768 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
398397ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
399 imaundi 6125 . . . . . . . . . . . . . . . . 17 (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)))
40013, 19jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 ∈ ℝ+ → ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0))
401 redivcl 11908 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ (𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
4024013expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0)) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
403400, 402sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ+) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
404403ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
405404adantll 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
406405, 203syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
407 peano2re 11354 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
408 reflcl 13765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
409406, 407, 4083syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
41013ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
411409, 410remulcld 11211 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
412411rexrd 11231 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ*)
413 pnfxr 11235 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
414413a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → +∞ ∈ ℝ*)
415 ltpnf 13087 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
416411, 415syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
417 snunioo 13446 . . . . . . . . . . . . . . . . . . 19 ((((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
418412, 414, 416, 417syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
419418imaeq2d 6034 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
420399, 419eqtr3id 2779 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
421223imaeq1d 6033 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
422225mptpreima 6214 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)}
423421, 422eqtrdi 2781 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
424423ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
425406, 407syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
426425adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
427 flflp1 13776 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ ∧ ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
428426, 352, 427syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
429411adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
430 elicopnf 13413 . . . . . . . . . . . . . . . . . . . . . 22 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
431429, 430syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
432336biantrurd 532 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
433409adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
43468ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
435433, 336, 434lemuldivd 13051 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
436431, 432, 4353bitr2d 307 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
437406adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
438352, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
439 1red 11182 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
440437, 438, 439ltadd1d 11778 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
441428, 436, 4403bitr4d 311 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
442295, 439, 438ltaddsubd 11785 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
443441, 442bitrd 279 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
444438, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
445292, 444, 434ltdivmul2d 13054 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
446444, 293remulcld 11211 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
447292, 446ltnled 11328 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
448443, 445, 4473bitrd 305 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
449448rabbidva 3415 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
450420, 424, 4493eqtrd 2769 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
451230ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹 ∈ MblFn)
452 mbfimasn 25540 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
453451, 335, 411, 452syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
454 mbfima 25538 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
455230, 4, 454syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
456455ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
457 unmbl 25445 . . . . . . . . . . . . . . . 16 (((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
458453, 456, 457syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
459450, 458eqeltrrd 2830 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
460237, 459syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
461 inmbl 25450 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
462460, 244, 461syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
463398, 462eqeltrd 2829 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
464463ralrimiva 3126 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
465 finiunmbl 25452 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
46641, 464, 465syl2anc 584 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
467390, 466eqeltrrd 2830 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
468254imaeq1d 6033 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}))
469256mptpreima 6214 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}
470140elsn 4607 . . . . . . . . . . . . 13 ((𝑥) ∈ {0} ↔ (𝑥) = 0)
471470rabbii 3414 . . . . . . . . . . . 12 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}} = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
472469, 471eqtri 2753 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
473468, 472eqtrdi 2781 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0})
474 i1fima 25586 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) ∈ dom vol)
475473, 474eqeltrrd 2830 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
476475ad2antlr 727 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
477 unmbl 25445 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
478467, 476, 477syl2anc 584 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
479478adantr 480 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
480254imaeq1d 6033 . . . . . . . . 9 ( ∈ dom ∫1 → ( “ {𝑡}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}))
481256mptpreima 6214 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}}
482140elsn 4607 . . . . . . . . . . . 12 ((𝑥) ∈ {𝑡} ↔ (𝑥) = 𝑡)
483 eqcom 2737 . . . . . . . . . . . 12 ((𝑥) = 𝑡𝑡 = (𝑥))
484482, 483bitri 275 . . . . . . . . . . 11 ((𝑥) ∈ {𝑡} ↔ 𝑡 = (𝑥))
485484rabbii 3414 . . . . . . . . . 10 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
486481, 485eqtri 2753 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
487480, 486eqtrdi 2781 . . . . . . . 8 ( ∈ dom ∫1 → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
488487ad3antlr 731 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
489488, 243eqeltrrd 2830 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol)
490 inmbl 25450 . . . . . 6 ((({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
491479, 489, 490syl2anc 584 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
492 unmbl 25445 . . . . 5 (((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol ∧ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
493385, 491, 492syl2anc 584 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
494159, 493syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
495154, 494eqeltrid 2833 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol)
496 mblvol 25438 . . . 4 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
497495, 496syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
498 eldifsn 4753 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) ↔ (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0))
499157anim1d 611 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ((𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
500498, 499biimtrid 242 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
501500imdistani 568 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
502128a1i 11 . . . . . . . . . . 11 ( ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}})
503468, 469eqtrdi 2781 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}})
504502, 503ineq12d 4187 . . . . . . . . . 10 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}))
505 inrab 4282 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})}
506504, 505eqtrdi 2781 . . . . . . . . 9 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
507506ad3antlr 731 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
508144biimpri 228 . . . . . . . . . . . . . . . . . 18 ((𝑥) = 0 → ¬ (𝑥) ≠ 0)
509508intnand 488 . . . . . . . . . . . . . . . . 17 ((𝑥) = 0 → ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
510509iffalsed 4502 . . . . . . . . . . . . . . . 16 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥))
511 eqtr 2750 . . . . . . . . . . . . . . . 16 ((if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
512510, 511mpancom 688 . . . . . . . . . . . . . . 15 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
513512adantl 481 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
514 simpll 766 . . . . . . . . . . . . . . 15 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 𝑡 ≠ 0)
515514necomd 2981 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 0 ≠ 𝑡)
516513, 515eqnetrd 2993 . . . . . . . . . . . . 13 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
517516ex 412 . . . . . . . . . . . 12 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
518 orcom 870 . . . . . . . . . . . . . 14 ((¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
519 ianor 983 . . . . . . . . . . . . . 14 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}))
520 imor 853 . . . . . . . . . . . . . 14 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
521518, 519, 5203bitr4i 303 . . . . . . . . . . . . 13 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
522142necon3bbii 2973 . . . . . . . . . . . . . 14 (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
523470, 522imbi12i 350 . . . . . . . . . . . . 13 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
524521, 523bitri 275 . . . . . . . . . . . 12 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
525517, 524sylibr 234 . . . . . . . . . . 11 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
526525ralrimiva 3126 . . . . . . . . . 10 (𝑡 ≠ 0 → ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
527 rabeq0 4354 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
528526, 527sylibr 234 . . . . . . . . 9 (𝑡 ≠ 0 → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
529528ad2antll 729 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
530507, 529eqtrd 2765 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅)
531 imassrn 6045 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
532 dfdm4 5862 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
533141, 127dmmpti 6665 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
534532, 533eqtr3i 2755 . . . . . . . . 9 ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
535531, 534sseqtri 3998 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ
536 reldisj 4419 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ → ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0}))))
537535, 536ax-mp 5 . . . . . . 7 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
538530, 537sylib 218 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
539 ffun 6694 . . . . . . . . . 10 (:ℝ⟶ℝ → Fun )
540 difpreima 7040 . . . . . . . . . 10 (Fun → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
541539, 540syl 17 . . . . . . . . 9 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
542 fdm 6700 . . . . . . . . . . 11 (:ℝ⟶ℝ → dom = ℝ)
543161, 542eqtrid 2777 . . . . . . . . . 10 (:ℝ⟶ℝ → ( “ ran ) = ℝ)
544543difeq1d 4091 . . . . . . . . 9 (:ℝ⟶ℝ → (( “ ran ) ∖ ( “ {0})) = (ℝ ∖ ( “ {0})))
545541, 544eqtrd 2765 . . . . . . . 8 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
54627, 545syl 17 . . . . . . 7 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
547546ad3antlr 731 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
548538, 547sseqtrrd 3987 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})))
549 imassrn 6045 . . . . . . 7 ( “ (ran ∖ {0})) ⊆ ran
550549, 181sseqtrid 3992 . . . . . 6 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ⊆ ℝ)
551550ad3antlr 731 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) ⊆ ℝ)
552 i1fima 25586 . . . . . . . 8 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ∈ dom vol)
553 mblvol 25438 . . . . . . . 8 (( “ (ran ∖ {0})) ∈ dom vol → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
554552, 553syl 17 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
555 neldifsn 4759 . . . . . . . 8 ¬ 0 ∈ (ran ∖ {0})
556 i1fima2 25587 . . . . . . . 8 (( ∈ dom ∫1 ∧ ¬ 0 ∈ (ran ∖ {0})) → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
557555, 556mpan2 691 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
558554, 557eqeltrrd 2830 . . . . . 6 ( ∈ dom ∫1 → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
559558ad3antlr 731 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
560 ovolsscl 25394 . . . . 5 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})) ∧ ( “ (ran ∖ {0})) ⊆ ℝ ∧ (vol*‘( “ (ran ∖ {0}))) ∈ ℝ) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
561548, 551, 559, 560syl3anc 1373 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
562501, 561syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
563497, 562eqeltrd 2829 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
56431, 126, 495, 563i1fd 25589 1 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592   ciun 4958   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  Fincfn 8921  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  3c3 12249  0cn0 12449  cz 12536  +crp 12958  (,)cioo 13313  [,)cico 13315  ...cfz 13475  cfl 13759  vol*covol 25370  volcvol 25371  MblFncmbf 25522  1citg1 25523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528
This theorem is referenced by:  itg2addnclem3  37674
  Copyright terms: Public domain W3C validator