Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itg2addnclem2 Structured version   Visualization version   GIF version

Theorem itg2addnclem2 34946
Description: Lemma for itg2addnc 34948. The function described is a simple function. (Contributed by Brendan Leahy, 29-Oct-2017.)
Hypotheses
Ref Expression
itg2addnc.f1 (𝜑𝐹 ∈ MblFn)
itg2addnc.f2 (𝜑𝐹:ℝ⟶(0[,)+∞))
Assertion
Ref Expression
itg2addnclem2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Distinct variable groups:   𝑥,𝑣,,𝐹   𝜑,𝑣,𝑥,

Proof of Theorem itg2addnclem2
Dummy variables 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2addnc.f2 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 rge0ssre 12847 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
3 fss 6529 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
41, 2, 3sylancl 588 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
54ad2antrr 724 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
65ffvelrnda 6853 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
7 rpre 12400 . . . . . . . . . 10 (𝑣 ∈ ℝ+𝑣 ∈ ℝ)
8 3re 11720 . . . . . . . . . . 11 3 ∈ ℝ
9 3ne0 11746 . . . . . . . . . . 11 3 ≠ 0
108, 9pm3.2i 473 . . . . . . . . . 10 (3 ∈ ℝ ∧ 3 ≠ 0)
11 redivcl 11361 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (𝑣 / 3) ∈ ℝ)
12113expb 1116 . . . . . . . . . 10 ((𝑣 ∈ ℝ ∧ (3 ∈ ℝ ∧ 3 ≠ 0)) → (𝑣 / 3) ∈ ℝ)
137, 10, 12sylancl 588 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ)
1413ad2antlr 725 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
15 rpcnne0 12410 . . . . . . . . . 10 (𝑣 ∈ ℝ+ → (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0))
16 3cn 11721 . . . . . . . . . . 11 3 ∈ ℂ
1716, 9pm3.2i 473 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 ≠ 0)
18 divne0 11312 . . . . . . . . . 10 (((𝑣 ∈ ℂ ∧ 𝑣 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (𝑣 / 3) ≠ 0)
1915, 17, 18sylancl 588 . . . . . . . . 9 (𝑣 ∈ ℝ+ → (𝑣 / 3) ≠ 0)
2019ad2antlr 725 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
216, 14, 20redivcld 11470 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
22 reflcl 13169 . . . . . . 7 (((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
2321, 22syl 17 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
24 peano2rem 10955 . . . . . 6 ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2523, 24syl 17 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
2625, 14remulcld 10673 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
27 i1ff 24279 . . . . . 6 ( ∈ dom ∫1:ℝ⟶ℝ)
2827ad2antlr 725 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ℝ)
2928ffvelrnda 6853 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
3026, 29ifcld 4514 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ ℝ)
3130fmpttd 6881 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶ℝ)
32 fzfi 13343 . . . . 5 (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin
33 ovex 7191 . . . . . . 7 ((𝑡 − 1) · (𝑣 / 3)) ∈ V
34 eqid 2823 . . . . . . 7 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) = (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
3533, 34fnmpti 6493 . . . . . 6 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
36 dffn4 6598 . . . . . 6 ((𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) Fn (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
3735, 36mpbi 232 . . . . 5 (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))
38 fofi 8812 . . . . 5 (((0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∈ Fin ∧ (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))):(0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))–onto→ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3)))) → ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin)
3932, 37, 38mp2an 690 . . . 4 ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin
40 i1frn 24280 . . . . 5 ( ∈ dom ∫1 → ran ∈ Fin)
4140ad2antlr 725 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ∈ Fin)
42 unfi 8787 . . . 4 ((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∈ Fin ∧ ran ∈ Fin) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
4339, 41, 42sylancr 589 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin)
44 3nn 11719 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
45 nnrp 12403 . . . . . . . . . . . . . . . . 17 (3 ∈ ℕ → 3 ∈ ℝ+)
4644, 45ax-mp 5 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
47 rpdivcl 12417 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑣 / 3) ∈ ℝ+)
4846, 47mpan2 689 . . . . . . . . . . . . . . 15 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℝ+)
4948ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
501ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝐹:ℝ⟶(0[,)+∞))
5150ffvelrnda 6853 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
52 elrege0 12845 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5351, 52sylib 220 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5453simprd 498 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
556, 49, 54divge0d 12474 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) / (𝑣 / 3)))
56 flge0nn0 13193 . . . . . . . . . . . . 13 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) / (𝑣 / 3))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
5721, 55, 56syl2anc 586 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℕ0)
5857nn0ge0d 11961 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
5958adantr 483 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))))
6027frnd 6523 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ⊆ ℝ)
61 i1f0rn 24285 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → 0 ∈ ran )
62 elex2 3518 . . . . . . . . . . . . . . . . . 18 (0 ∈ ran → ∃𝑥 𝑥 ∈ ran )
6361, 62syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ∃𝑥 𝑥 ∈ ran )
64 n0 4312 . . . . . . . . . . . . . . . . 17 (ran ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ran )
6563, 64sylibr 236 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ran ≠ ∅)
66 fimaxre2 11588 . . . . . . . . . . . . . . . . 17 ((ran ⊆ ℝ ∧ ran ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
6760, 40, 66syl2anc 586 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥)
6860, 65, 673jca 1124 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
6968ad3antlr 729 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥))
70 ffn 6516 . . . . . . . . . . . . . . . . . 18 (:ℝ⟶ℝ → Fn ℝ)
7127, 70syl 17 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 Fn ℝ)
72 dffn3 6527 . . . . . . . . . . . . . . . . 17 ( Fn ℝ ↔ :ℝ⟶ran )
7371, 72sylib 220 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1:ℝ⟶ran )
7473ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → :ℝ⟶ran )
7574ffvelrnda 6853 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ ran )
76 suprub 11604 . . . . . . . . . . . . . 14 (((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) ∧ (𝑥) ∈ ran ) → (𝑥) ≤ sup(ran , ℝ, < ))
7769, 75, 76syl2anc 586 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ≤ sup(ran , ℝ, < ))
78 suprcl 11603 . . . . . . . . . . . . . . . . 17 ((ran ⊆ ℝ ∧ ran ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑦𝑥) → sup(ran , ℝ, < ) ∈ ℝ)
7960, 65, 67, 78syl3anc 1367 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → sup(ran , ℝ, < ) ∈ ℝ)
8079ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → sup(ran , ℝ, < ) ∈ ℝ)
81 letr 10736 . . . . . . . . . . . . . . 15 (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ ∧ (𝑥) ∈ ℝ ∧ sup(ran , ℝ, < ) ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
8226, 29, 80, 81syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < )))
8325, 80, 49lemuldivd 12483 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3))))
84 1red 10644 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
8580, 14, 20redivcld 11470 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ)
8623, 84, 85lesubaddd 11239 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (sup(ran , ℝ, < ) / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
8783, 86bitrd 281 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
88 peano2re 10815 . . . . . . . . . . . . . . . . . 18 ((sup(ran , ℝ, < ) / (𝑣 / 3)) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
8985, 88syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ)
90 ceige 13216 . . . . . . . . . . . . . . . . 17 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
9189, 90syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
92 ceicl 13214 . . . . . . . . . . . . . . . . . . 19 (((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
9389, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
9493zred 12090 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ)
95 letr 10736 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∈ ℝ ∧ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
9623, 89, 94, 95syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ∧ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
9791, 96mpan2d 692 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
9887, 97sylbid 242 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ sup(ran , ℝ, < ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
9982, 98syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≤ sup(ran , ℝ, < )) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
10077, 99mpan2d 692 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
101100adantrd 494 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
102101imp 409 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))
10321flcld 13171 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
104103adantr 483 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
105 0zd 11996 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → 0 ∈ ℤ)
10693adantr 483 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ)
107 elfz 12901 . . . . . . . . . . 11 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ ∧ 0 ∈ ℤ ∧ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∧ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))))
108104, 105, 106, 107syl3anc 1367 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↔ (0 ≤ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∧ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ -(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))))
10959, 102, 108mpbir2and 711 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))))
110 eqid 2823 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))
111 oveq1 7165 . . . . . . . . . . 11 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → (𝑡 − 1) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
112111oveq1d 7173 . . . . . . . . . 10 (𝑡 = (⌊‘((𝐹𝑥) / (𝑣 / 3))) → ((𝑡 − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))
113112rspceeqv 3640 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ∧ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
114109, 110, 113sylancl 588 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
115 ovex 7191 . . . . . . . . 9 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V
11634elrnmpt 5830 . . . . . . . . 9 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ V → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3))))
117115, 116ax-mp 5 . . . . . . . 8 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ↔ ∃𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1)))(((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) = ((𝑡 − 1) · (𝑣 / 3)))
118114, 117sylibr 236 . . . . . . 7 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))))
119 elun1 4154 . . . . . . 7 ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
120118, 119syl 17 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
121 elun2 4155 . . . . . . . 8 ((𝑥) ∈ ran → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
12275, 121syl 17 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
123122adantr 483 . . . . . 6 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)) → (𝑥) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
124120, 123ifclda 4503 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
125124fmpttd 6881 . . . 4 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))):ℝ⟶(ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
126125frnd 6523 . . 3 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ))
127 ssfi 8740 . . 3 (((ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran ) ∈ Fin ∧ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ (ran (𝑡 ∈ (0...-(⌊‘-((sup(ran , ℝ, < ) / (𝑣 / 3)) + 1))) ↦ ((𝑡 − 1) · (𝑣 / 3))) ∪ ran )) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
12843, 126, 127syl2anc 586 . 2 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ Fin)
129 eqid 2823 . . . . 5 (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
130129mptpreima 6094 . . . 4 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}}
131 unrab 4276 . . . . 5 ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}) = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
132 inrab 4277 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) = {𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)}
133132ineq1i 4187 . . . . . . 7 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
134 inrab 4277 . . . . . . 7 ({𝑥 ∈ ℝ ∣ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
135133, 134eqtri 2846 . . . . . 6 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) = {𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))}
136 unrab 4276 . . . . . . . 8 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) = {𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)}
137136ineq1i 4187 . . . . . . 7 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
138 inrab 4277 . . . . . . 7 ({𝑥 ∈ ℝ ∣ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0)} ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
139137, 138eqtri 2846 . . . . . 6 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) = {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))}
140135, 139uneq12i 4139 . . . . 5 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) = ({𝑥 ∈ ℝ ∣ (((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)))} ∪ {𝑥 ∈ ℝ ∣ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))})
141 eqcom 2830 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
142 fvex 6685 . . . . . . . . 9 (𝑥) ∈ V
143115, 142ifex 4517 . . . . . . . 8 if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ V
144143elsn 4584 . . . . . . 7 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 𝑡)
145 ianor 978 . . . . . . . . . . 11 (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0))
146 nne 3022 . . . . . . . . . . . 12 (¬ (𝑥) ≠ 0 ↔ (𝑥) = 0)
147146orbi2i 909 . . . . . . . . . . 11 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ ¬ (𝑥) ≠ 0) ↔ (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0))
148145, 147bitr2i 278 . . . . . . . . . 10 ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ↔ ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
149148anbi1i 625 . . . . . . . . 9 (((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)) ↔ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥)))
150149orbi2i 909 . . . . . . . 8 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
151 eqif 4509 . . . . . . . 8 (𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ (¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (𝑥))))
152150, 151bitr4i 280 . . . . . . 7 (((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))) ↔ 𝑡 = if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
153141, 144, 1523bitr4i 305 . . . . . 6 (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥))))
154153rabbii 3475 . . . . 5 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ ((((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0) ∧ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))) ∨ ((¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∨ (𝑥) = 0) ∧ 𝑡 = (𝑥)))}
155131, 140, 1543eqtr4ri 2857 . . . 4 {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
156130, 155eqtri 2846 . . 3 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}))
157 eldifi 4105 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))))
15831frnd 6523 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ⊆ ℝ)
159158sseld 3968 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) → 𝑡 ∈ ℝ))
160157, 159syl5 34 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → 𝑡 ∈ ℝ))
161160imdistani 571 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
162 rabiun 34867 . . . . . . . . . 10 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
163 cnvimarndm 5952 . . . . . . . . . . . . . 14 ( “ ran ) = dom
164 iunid 4986 . . . . . . . . . . . . . . . 16 𝑡 ∈ ran {𝑡} = ran
165164imaeq2i 5929 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = ( “ ran )
166 imaiun 7006 . . . . . . . . . . . . . . 15 ( 𝑡 ∈ ran {𝑡}) = 𝑡 ∈ ran ( “ {𝑡})
167165, 166eqtr3i 2848 . . . . . . . . . . . . . 14 ( “ ran ) = 𝑡 ∈ ran ( “ {𝑡})
168163, 167eqtr3i 2848 . . . . . . . . . . . . 13 dom = 𝑡 ∈ ran ( “ {𝑡})
16927fdmd 6525 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → dom = ℝ)
170168, 169syl5eqr 2872 . . . . . . . . . . . 12 ( ∈ dom ∫1 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
171170ad2antlr 725 . . . . . . . . . . 11 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran ( “ {𝑡}) = ℝ)
172 rabeq 3485 . . . . . . . . . . 11 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
173171, 172syl 17 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
174162, 173syl5eqr 2872 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
175 fniniseg 6832 . . . . . . . . . . . . . . . . . 18 ( Fn ℝ → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
17627, 70, 1753syl 18 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → (𝑥 ∈ ( “ {𝑡}) ↔ (𝑥 ∈ ℝ ∧ (𝑥) = 𝑡)))
177176simplbda 502 . . . . . . . . . . . . . . . 16 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (𝑥) = 𝑡)
178177breq2d 5080 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
179178rabbidva 3480 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
180 inrab2 4278 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
181 imassrn 5942 . . . . . . . . . . . . . . . . . 18 ( “ {𝑡}) ⊆ ran
182 dfdm4 5766 . . . . . . . . . . . . . . . . . . 19 dom = ran
183182, 169syl5eqr 2872 . . . . . . . . . . . . . . . . . 18 ( ∈ dom ∫1 → ran = ℝ)
184181, 183sseqtrid 4021 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 → ( “ {𝑡}) ⊆ ℝ)
185 sseqin2 4194 . . . . . . . . . . . . . . . . 17 (( “ {𝑡}) ⊆ ℝ ↔ (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
186184, 185sylib 220 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}))
187 rabeq 3485 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
188186, 187syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
189180, 188syl5eq 2870 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
190179, 189eqtr4d 2861 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
191190ad3antlr 729 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
19225adantlr 713 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
19360ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ran ⊆ ℝ)
194193sselda 3969 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → 𝑡 ∈ ℝ)
195194adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
19648ad3antlr 729 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
197192, 195, 196lemuldivd 12483 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3))))
19823adantlr 713 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
199 1red 10644 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
20013ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
20119ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
202195, 200, 201redivcld 11470 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
203198, 199, 202lesubaddd 11239 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ≤ (𝑡 / (𝑣 / 3)) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1)))
2046adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
205 peano2re 10815 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 / (𝑣 / 3)) ∈ ℝ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
206202, 205syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
207 reflcl 13169 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ)
209 peano2re 10815 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) ∈ ℝ → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
210208, 209syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ∈ ℝ)
211204, 210, 196ltdivmuld 12485 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
21221adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
213 flflp1 13180 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
214212, 206, 213syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ ((𝐹𝑥) / (𝑣 / 3)) < ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))
215200, 210remulcld 10673 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ)
216215rexrd 10693 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ*)
217 elioomnf 12835 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
218216, 217syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
219204biantrurd 535 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
220218, 219bitr4d 284 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))) ↔ (𝐹𝑥) < ((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1))))
221211, 214, 2203bitr4d 313 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) ≤ ((𝑡 / (𝑣 / 3)) + 1) ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
222197, 203, 2213bitrd 307 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡 ↔ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
223222rabbidva 3480 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
2241feqmptd 6735 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
225224cnveqd 5748 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
226225imaeq1d 5930 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
227 eqid 2823 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
228227mptpreima 6094 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))}
229226, 228syl6eq 2874 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
230229ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))})
231223, 230eqtr4d 2861 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))))
232 itg2addnc.f1 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
233 mbfima 24233 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
234232, 4, 233syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
235234ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (𝐹 “ (-∞(,)((𝑣 / 3) · ((⌊‘((𝑡 / (𝑣 / 3)) + 1)) + 1)))) ∈ dom vol)
236231, 235eqeltrd 2915 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
23760sseld 3968 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → (𝑡 ∈ ran 𝑡 ∈ ℝ))
238237ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ ran 𝑡 ∈ ℝ))
239238imdistani 571 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ))
240 i1fmbf 24278 . . . . . . . . . . . . . . . . 17 ( ∈ dom ∫1 ∈ MblFn)
241240, 27jca 514 . . . . . . . . . . . . . . . 16 ( ∈ dom ∫1 → ( ∈ MblFn ∧ :ℝ⟶ℝ))
242241ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ( ∈ MblFn ∧ :ℝ⟶ℝ))
243 mbfimasn 24235 . . . . . . . . . . . . . . . 16 (( ∈ MblFn ∧ :ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
2442433expa 1114 . . . . . . . . . . . . . . 15 ((( ∈ MblFn ∧ :ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
245242, 244sylan 582 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) ∈ dom vol)
246239, 245syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ( “ {𝑡}) ∈ dom vol)
247 inmbl 24145 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
248236, 246, 247syl2anc 586 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
249191, 248eqeltrd 2915 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
250249ralrimiva 3184 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
251 finiunmbl 24147 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
25241, 250, 251syl2anc 586 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
253174, 252eqeltrrd 2916 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
254 unrab 4276 . . . . . . . . . . 11 ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}) = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))}
25527feqmptd 6735 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
256255cnveqd 5748 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 = (𝑥 ∈ ℝ ↦ (𝑥)))
257256imaeq1d 5930 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)))
258 eqid 2823 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (𝑥)) = (𝑥 ∈ ℝ ↦ (𝑥))
259258mptpreima 6094 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)}
260257, 259syl6eq 2874 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (-∞(,)0)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)})
261256imaeq1d 5930 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)))
262258mptpreima 6094 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ↦ (𝑥)) “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}
263261, 262syl6eq 2874 . . . . . . . . . . . 12 ( ∈ dom ∫1 → ( “ (0(,)+∞)) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)})
264260, 263uneq12d 4142 . . . . . . . . . . 11 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = ({𝑥 ∈ ℝ ∣ (𝑥) ∈ (-∞(,)0)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) ∈ (0(,)+∞)}))
26527ffvelrnda 6853 . . . . . . . . . . . . 13 (( ∈ dom ∫1𝑥 ∈ ℝ) → (𝑥) ∈ ℝ)
266 0re 10645 . . . . . . . . . . . . . . 15 0 ∈ ℝ
267 lttri2 10725 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
268266, 267mpan2 689 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) < 0 ∨ 0 < (𝑥))))
269 ibar 531 . . . . . . . . . . . . . . 15 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥)))))
270 andi 1004 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
271 0xr 10690 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
272 elioomnf 12835 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (-∞(,)0) ↔ ((𝑥) ∈ ℝ ∧ (𝑥) < 0)))
273 elioopnf 12834 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ((𝑥) ∈ (0(,)+∞) ↔ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
274272, 273orbi12d 915 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥)))))
275271, 274ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)) ↔ (((𝑥) ∈ ℝ ∧ (𝑥) < 0) ∨ ((𝑥) ∈ ℝ ∧ 0 < (𝑥))))
276270, 275bitr4i 280 . . . . . . . . . . . . . . 15 (((𝑥) ∈ ℝ ∧ ((𝑥) < 0 ∨ 0 < (𝑥))) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞)))
277269, 276syl6bb 289 . . . . . . . . . . . . . 14 ((𝑥) ∈ ℝ → (((𝑥) < 0 ∨ 0 < (𝑥)) ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
278268, 277bitrd 281 . . . . . . . . . . . . 13 ((𝑥) ∈ ℝ → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
279265, 278syl 17 . . . . . . . . . . . 12 (( ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑥) ≠ 0 ↔ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))))
280279rabbidva 3480 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} = {𝑥 ∈ ℝ ∣ ((𝑥) ∈ (-∞(,)0) ∨ (𝑥) ∈ (0(,)+∞))})
281254, 264, 2803eqtr4a 2884 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) = {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0})
282 i1fima 24281 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (-∞(,)0)) ∈ dom vol)
283 i1fima 24281 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ (0(,)+∞)) ∈ dom vol)
284 unmbl 24140 . . . . . . . . . . 11 ((( “ (-∞(,)0)) ∈ dom vol ∧ ( “ (0(,)+∞)) ∈ dom vol) → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
285282, 283, 284syl2anc 586 . . . . . . . . . 10 ( ∈ dom ∫1 → (( “ (-∞(,)0)) ∪ ( “ (0(,)+∞))) ∈ dom vol)
286281, 285eqeltrrd 2916 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
287286ad2antlr 725 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol)
288 inmbl 24145 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
289253, 287, 288syl2anc 586 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
290289adantr 483 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol)
29123recnd 10671 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
292291adantlr 713 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℂ)
293 1cnd 10638 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
294 simplr 767 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℝ)
29513ad3antlr 729 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
29619ad3antlr 729 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ≠ 0)
297294, 295, 296redivcld 11470 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
298297recnd 10671 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℂ)
299292, 293, 298subadd2d 11018 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
300 eqcom 2830 . . . . . . . . . 10 (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ (𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1))
301 recn 10629 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
302301ad2antlr 725 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑡 ∈ ℂ)
30325recnd 10671 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
304303adantlr 713 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℂ)
30513recnd 10671 . . . . . . . . . . . 12 (𝑣 ∈ ℝ+ → (𝑣 / 3) ∈ ℂ)
306305ad3antlr 729 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℂ)
307302, 304, 306, 296divmul3d 11452 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) = ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
308300, 307syl5bb 285 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) = (𝑡 / (𝑣 / 3)) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
309299, 308bitr3d 283 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
310309rabbidva 3480 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))})
311 imaundi 6010 . . . . . . . . . . 11 (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
312225ad4antr 730 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
313 zre 11988 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
314313adantl 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
31513ad3antlr 729 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ)
316314, 315remulcld 10673 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ)
317316rexrd 10693 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ*)
318 peano2z 12026 . . . . . . . . . . . . . . . . 17 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℤ)
319318zred 12090 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
320319adantl 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
321315, 320remulcld 10673 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
322321rexrd 10693 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*)
323 zcn 11989 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
324323adantl 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℂ)
325305ad3antlr 729 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℂ)
326324, 325mulcomd 10664 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) = ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)))
32748ad3antlr 729 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
328313ltp1d 11572 . . . . . . . . . . . . . . . 16 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
329328adantl 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) < (((𝑡 / (𝑣 / 3)) + 1) + 1))
330314, 320, 327, 329ltmul2dd 12490 . . . . . . . . . . . . . 14 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑣 / 3) · ((𝑡 / (𝑣 / 3)) + 1)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
331326, 330eqbrtrd 5090 . . . . . . . . . . . . 13 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))
332 snunioo 12867 . . . . . . . . . . . . 13 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ* ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ* ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
333317, 322, 331, 332syl3anc 1367 . . . . . . . . . . . 12 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
334312, 333imaeq12d 5932 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ({(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))} ∪ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
335311, 334syl5eqr 2872 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
336227mptpreima 6094 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))}
3374ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
338337ffvelrnda 6853 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3393383biant1d 1474 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
340339adantr 483 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
341313adantl 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
342338adantr 483 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹𝑥) ∈ ℝ)
34348ad4antlr 731 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝑣 / 3) ∈ ℝ+)
344341, 342, 343lemuldivd 12483 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3))))
345319adantl 484 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
346342, 345, 343ltdivmuld 12485 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1) ↔ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))
347346bicomd 225 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ↔ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1)))
348344, 347anbi12d 632 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
349340, 348bitr3d 283 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
350 elico2 12803 . . . . . . . . . . . . . . . 16 (((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ ∧ ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ*) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
351316, 322, 350syl2anc 586 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
352351adantlr 713 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ≤ (𝐹𝑥) ∧ (𝐹𝑥) < ((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))))
353 eqcom 2830 . . . . . . . . . . . . . . 15 (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1))
35421adantlr 713 . . . . . . . . . . . . . . . 16 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ)
355 flbi 13189 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
356354, 355sylan 582 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) = ((𝑡 / (𝑣 / 3)) + 1) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
357353, 356syl5bb 285 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) ≤ ((𝐹𝑥) / (𝑣 / 3)) ∧ ((𝐹𝑥) / (𝑣 / 3)) < (((𝑡 / (𝑣 / 3)) + 1) + 1))))
358349, 352, 3573bitr4d 313 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
359358an32s 650 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))) ↔ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
360359rabbidva 3480 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))} = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
361336, 360syl5eq 2870 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))[,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
362335, 361eqtrd 2858 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) = {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))})
363232ad4antr 730 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹 ∈ MblFn)
3644ad4antr 730 . . . . . . . . . . 11 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → 𝐹:ℝ⟶ℝ)
365 mbfimasn 24235 . . . . . . . . . . 11 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
366363, 364, 316, 365syl3anc 1367 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol)
367 mbfima 24233 . . . . . . . . . . . 12 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
368232, 4, 367syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
369368ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol)
370 unmbl 24140 . . . . . . . . . 10 (((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1)))) ∈ dom vol) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
371366, 369, 370syl2anc 586 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ((𝐹 “ {(((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))}) ∪ (𝐹 “ ((((𝑡 / (𝑣 / 3)) + 1) · (𝑣 / 3))(,)((𝑣 / 3) · (((𝑡 / (𝑣 / 3)) + 1) + 1))))) ∈ dom vol)
372362, 371eqeltrrd 2916 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
373 simpr 487 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
374354flcld 13171 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
375374adantr 483 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℤ)
376373, 375eqeltrd 2915 . . . . . . . . . . . . 13 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ)
377376stoic1a 1773 . . . . . . . . . . . 12 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
378377an32s 650 . . . . . . . . . . 11 ((((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) ∧ 𝑥 ∈ ℝ) → ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
379378ralrimiva 3184 . . . . . . . . . 10 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
380 rabeq0 4340 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3))))
381379, 380sylibr 236 . . . . . . . . 9 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} = ∅)
382 0mbl 24142 . . . . . . . . 9 ∅ ∈ dom vol
383381, 382eqeltrdi 2923 . . . . . . . 8 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ ¬ ((𝑡 / (𝑣 / 3)) + 1) ∈ ℤ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
384372, 383pm2.61dan 811 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ((𝑡 / (𝑣 / 3)) + 1) = (⌊‘((𝐹𝑥) / (𝑣 / 3)))} ∈ dom vol)
385310, 384eqeltrrd 2916 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol)
386 inmbl 24145 . . . . . 6 ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
387290, 385, 386syl2anc 586 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol)
388 rabiun 34867 . . . . . . . . . . 11 {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)}
389 rabeq 3485 . . . . . . . . . . . 12 ( 𝑡 ∈ ran ( “ {𝑡}) = ℝ → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
390170, 389syl 17 . . . . . . . . . . 11 ( ∈ dom ∫1 → {𝑥 𝑡 ∈ ran ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
391388, 390syl5eqr 2872 . . . . . . . . . 10 ( ∈ dom ∫1 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
392391ad2antlr 725 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)})
393178notbid 320 . . . . . . . . . . . . . . 15 (( ∈ dom ∫1𝑥 ∈ ( “ {𝑡})) → (¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
394393rabbidva 3480 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
395 inrab2 4278 . . . . . . . . . . . . . . 15 ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡}
396 rabeq 3485 . . . . . . . . . . . . . . . 16 ((ℝ ∩ ( “ {𝑡})) = ( “ {𝑡}) → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
397186, 396syl 17 . . . . . . . . . . . . . . 15 ( ∈ dom ∫1 → {𝑥 ∈ (ℝ ∩ ( “ {𝑡})) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
398395, 397syl5eq 2870 . . . . . . . . . . . . . 14 ( ∈ dom ∫1 → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) = {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
399394, 398eqtr4d 2861 . . . . . . . . . . . . 13 ( ∈ dom ∫1 → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
400399ad3antlr 729 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} = ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})))
401 imaundi 6010 . . . . . . . . . . . . . . . . 17 (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)))
40213, 19jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 ∈ ℝ+ → ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0))
403 redivcl 11361 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ (𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
4044033expb 1116 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ ((𝑣 / 3) ∈ ℝ ∧ (𝑣 / 3) ≠ 0)) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
405402, 404sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ+) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
406405ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
407406adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑡 / (𝑣 / 3)) ∈ ℝ)
408407, 205syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
409 peano2re 10815 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
410 reflcl 13169 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
411408, 409, 4103syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
41213ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝑣 / 3) ∈ ℝ)
413411, 412remulcld 10673 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
414413rexrd 10693 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ*)
415 pnfxr 10697 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
416415a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → +∞ ∈ ℝ*)
417 ltpnf 12518 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
418413, 417syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞)
419 snunioo 12867 . . . . . . . . . . . . . . . . . . 19 ((((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) < +∞) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
420414, 416, 418, 419syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) = (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞))
421420imaeq2d 5931 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ ({((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))} ∪ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
422401, 421syl5eqr 2872 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
423225imaeq1d 5930 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)))
424227mptpreima 6094 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)}
425423, 424syl6eq 2874 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
426425ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)) = {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)})
427408, 409syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
428427adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ)
429 flflp1 13180 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑡 / (𝑣 / 3)) + 1) + 1) ∈ ℝ ∧ ((𝐹𝑥) / (𝑣 / 3)) ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
430428, 354, 429syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3)) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
431413adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ)
432 elicopnf 12836 . . . . . . . . . . . . . . . . . . . . . 22 (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
433431, 432syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
434338biantrurd 535 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥))))
435411adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ∈ ℝ)
43648ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑣 / 3) ∈ ℝ+)
437435, 338, 436lemuldivd 12483 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ≤ (𝐹𝑥) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
438433, 434, 4373bitr2d 309 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) ≤ ((𝐹𝑥) / (𝑣 / 3))))
439408adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) + 1) ∈ ℝ)
440354, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) / (𝑣 / 3))) ∈ ℝ)
441 1red 10644 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
442439, 440, 441ltadd1d 11235 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (((𝑡 / (𝑣 / 3)) + 1) + 1) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) + 1)))
443430, 438, 4423bitr4d 313 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3)))))
444297, 441, 440ltaddsubd 11242 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((𝑡 / (𝑣 / 3)) + 1) < (⌊‘((𝐹𝑥) / (𝑣 / 3))) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
445443, 444bitrd 281 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ (𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1)))
446440, 24syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ∈ ℝ)
447294, 446, 436ltdivmul2d 12486 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑡 / (𝑣 / 3)) < ((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) ↔ 𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))))
448446, 295remulcld 10673 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ∈ ℝ)
449294, 448ltnled 10789 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑡 < (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
450445, 447, 4493bitrd 307 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞) ↔ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡))
451450rabbidva 3480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝐹𝑥) ∈ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))[,)+∞)} = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
452422, 426, 4513eqtrd 2862 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) = {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡})
453232ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → 𝐹 ∈ MblFn)
454 mbfimasn 24235 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ ((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3)) ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
455453, 337, 413, 454syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol)
456 mbfima 24233 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
457232, 4, 456syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
458457ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol)
459 unmbl 24140 . . . . . . . . . . . . . . . 16 (((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∈ dom vol ∧ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞)) ∈ dom vol) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
460455, 458, 459syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((𝐹 “ {((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))}) ∪ (𝐹 “ (((⌊‘(((𝑡 / (𝑣 / 3)) + 1) + 1)) · (𝑣 / 3))(,)+∞))) ∈ dom vol)
461452, 460eqeltrrd 2916 . . . . . . . . . . . . . 14 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
462239, 461syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol)
463 inmbl 24145 . . . . . . . . . . . . 13 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∈ dom vol ∧ ( “ {𝑡}) ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
464462, 246, 463syl2anc 586 . . . . . . . . . . . 12 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ 𝑡} ∩ ( “ {𝑡})) ∈ dom vol)
465400, 464eqeltrd 2915 . . . . . . . . . . 11 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ran ) → {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
466465ralrimiva 3184 . . . . . . . . . 10 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
467 finiunmbl 24147 . . . . . . . . . 10 ((ran ∈ Fin ∧ ∀𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
46841, 466, 467syl2anc 586 . . . . . . . . 9 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → 𝑡 ∈ ran {𝑥 ∈ ( “ {𝑡}) ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
469392, 468eqeltrrd 2916 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol)
470256imaeq1d 5930 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}))
471258mptpreima 6094 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}
472142elsn 4584 . . . . . . . . . . . . 13 ((𝑥) ∈ {0} ↔ (𝑥) = 0)
473472rabbii 3475 . . . . . . . . . . . 12 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}} = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
474471, 473eqtri 2846 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0}
475470, 474syl6eq 2874 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) = 0})
476 i1fima 24281 . . . . . . . . . 10 ( ∈ dom ∫1 → ( “ {0}) ∈ dom vol)
477475, 476eqeltrrd 2916 . . . . . . . . 9 ( ∈ dom ∫1 → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
478477ad2antlr 725 . . . . . . . 8 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol)
479 unmbl 24140 . . . . . . . 8 (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ (𝑥) = 0} ∈ dom vol) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
480469, 478, 479syl2anc 586 . . . . . . 7 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
481480adantr 483 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol)
482256imaeq1d 5930 . . . . . . . . 9 ( ∈ dom ∫1 → ( “ {𝑡}) = ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}))
483258mptpreima 6094 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}}
484142elsn 4584 . . . . . . . . . . . 12 ((𝑥) ∈ {𝑡} ↔ (𝑥) = 𝑡)
485 eqcom 2830 . . . . . . . . . . . 12 ((𝑥) = 𝑡𝑡 = (𝑥))
486484, 485bitri 277 . . . . . . . . . . 11 ((𝑥) ∈ {𝑡} ↔ 𝑡 = (𝑥))
487486rabbii 3475 . . . . . . . . . 10 {𝑥 ∈ ℝ ∣ (𝑥) ∈ {𝑡}} = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
488483, 487eqtri 2846 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ (𝑥)) “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}
489482, 488syl6eq 2874 . . . . . . . 8 ( ∈ dom ∫1 → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
490489ad3antlr 729 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ( “ {𝑡}) = {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})
491490, 245eqeltrrd 2916 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol)
492 inmbl 24145 . . . . . 6 ((({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∈ dom vol ∧ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)} ∈ dom vol) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
493481, 491, 492syl2anc 586 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol)
494 unmbl 24140 . . . . 5 (((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∈ dom vol ∧ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)}) ∈ dom vol) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
495387, 493, 494syl2anc 586 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ ℝ) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
496161, 495syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((({𝑥 ∈ ℝ ∣ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ≠ 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3))}) ∪ (({𝑥 ∈ ℝ ∣ ¬ (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥)} ∪ {𝑥 ∈ ℝ ∣ (𝑥) = 0}) ∩ {𝑥 ∈ ℝ ∣ 𝑡 = (𝑥)})) ∈ dom vol)
497156, 496eqeltrid 2919 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol)
498 mblvol 24133 . . . 4 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∈ dom vol → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
499497, 498syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) = (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})))
500 eldifsn 4721 . . . . . 6 (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) ↔ (𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0))
501159anim1d 612 . . . . . 6 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → ((𝑡 ∈ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∧ 𝑡 ≠ 0) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
502500, 501syl5bi 244 . . . . 5 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0}) → (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
503502imdistani 571 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)))
504130a1i 11 . . . . . . . . . . 11 ( ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) = {𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}})
505470, 471syl6eq 2874 . . . . . . . . . . 11 ( ∈ dom ∫1 → ( “ {0}) = {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}})
506504, 505ineq12d 4192 . . . . . . . . . 10 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}))
507 inrab 4277 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}} ∩ {𝑥 ∈ ℝ ∣ (𝑥) ∈ {0}}) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})}
508506, 507syl6eq 2874 . . . . . . . . 9 ( ∈ dom ∫1 → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
509508ad3antlr 729 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})})
510146biimpri 230 . . . . . . . . . . . . . . . . . 18 ((𝑥) = 0 → ¬ (𝑥) ≠ 0)
511510intnand 491 . . . . . . . . . . . . . . . . 17 ((𝑥) = 0 → ¬ ((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0))
512511iffalsed 4480 . . . . . . . . . . . . . . . 16 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥))
513 eqtr 2843 . . . . . . . . . . . . . . . 16 ((if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = (𝑥) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
514512, 513mpancom 686 . . . . . . . . . . . . . . 15 ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
515514adantl 484 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) = 0)
516 simpll 765 . . . . . . . . . . . . . . 15 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 𝑡 ≠ 0)
517516necomd 3073 . . . . . . . . . . . . . 14 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → 0 ≠ 𝑡)
518515, 517eqnetrd 3085 . . . . . . . . . . . . 13 (((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) ∧ (𝑥) = 0) → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
519518ex 415 . . . . . . . . . . . 12 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
520 orcom 866 . . . . . . . . . . . . . 14 ((¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
521 ianor 978 . . . . . . . . . . . . . 14 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∨ ¬ (𝑥) ∈ {0}))
522 imor 849 . . . . . . . . . . . . . 14 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ (¬ (𝑥) ∈ {0} ∨ ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
523520, 521, 5223bitr4i 305 . . . . . . . . . . . . 13 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}))
524144necon3bbii 3065 . . . . . . . . . . . . . 14 (¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ↔ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡)
525472, 524imbi12i 353 . . . . . . . . . . . . 13 (((𝑥) ∈ {0} → ¬ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
526523, 525bitri 277 . . . . . . . . . . . 12 (¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}) ↔ ((𝑥) = 0 → if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ≠ 𝑡))
527519, 526sylibr 236 . . . . . . . . . . 11 ((𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ) → ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
528527ralrimiva 3184 . . . . . . . . . 10 (𝑡 ≠ 0 → ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
529 rabeq0 4340 . . . . . . . . . 10 ({𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅ ↔ ∀𝑥 ∈ ℝ ¬ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0}))
530528, 529sylibr 236 . . . . . . . . 9 (𝑡 ≠ 0 → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
531530ad2antll 727 . . . . . . . 8 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → {𝑥 ∈ ℝ ∣ (if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)) ∈ {𝑡} ∧ (𝑥) ∈ {0})} = ∅)
532509, 531eqtrd 2858 . . . . . . 7 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅)
533 imassrn 5942 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
534 dfdm4 5766 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥)))
535143, 129dmmpti 6494 . . . . . . . . . 10 dom (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
536534, 535eqtr3i 2848 . . . . . . . . 9 ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) = ℝ
537533, 536sseqtri 4005 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ
538 reldisj 4404 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ℝ → ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0}))))
539537, 538ax-mp 5 . . . . . . 7 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ∩ ( “ {0})) = ∅ ↔ ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
540532, 539sylib 220 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ (ℝ ∖ ( “ {0})))
541 ffun 6519 . . . . . . . . . 10 (:ℝ⟶ℝ → Fun )
542 difpreima 6837 . . . . . . . . . 10 (Fun → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
543541, 542syl 17 . . . . . . . . 9 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (( “ ran ) ∖ ( “ {0})))
544 fdm 6524 . . . . . . . . . . 11 (:ℝ⟶ℝ → dom = ℝ)
545163, 544syl5eq 2870 . . . . . . . . . 10 (:ℝ⟶ℝ → ( “ ran ) = ℝ)
546545difeq1d 4100 . . . . . . . . 9 (:ℝ⟶ℝ → (( “ ran ) ∖ ( “ {0})) = (ℝ ∖ ( “ {0})))
547543, 546eqtrd 2858 . . . . . . . 8 (:ℝ⟶ℝ → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
54827, 547syl 17 . . . . . . 7 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
549548ad3antlr 729 . . . . . 6 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) = (ℝ ∖ ( “ {0})))
550540, 549sseqtrrd 4010 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})))
551 imassrn 5942 . . . . . . 7 ( “ (ran ∖ {0})) ⊆ ran
552551, 183sseqtrid 4021 . . . . . 6 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ⊆ ℝ)
553552ad3antlr 729 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → ( “ (ran ∖ {0})) ⊆ ℝ)
554 i1fima 24281 . . . . . . . 8 ( ∈ dom ∫1 → ( “ (ran ∖ {0})) ∈ dom vol)
555 mblvol 24133 . . . . . . . 8 (( “ (ran ∖ {0})) ∈ dom vol → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
556554, 555syl 17 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) = (vol*‘( “ (ran ∖ {0}))))
557 neldifsn 4727 . . . . . . . 8 ¬ 0 ∈ (ran ∖ {0})
558 i1fima2 24282 . . . . . . . 8 (( ∈ dom ∫1 ∧ ¬ 0 ∈ (ran ∖ {0})) → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
559557, 558mpan2 689 . . . . . . 7 ( ∈ dom ∫1 → (vol‘( “ (ran ∖ {0}))) ∈ ℝ)
560556, 559eqeltrrd 2916 . . . . . 6 ( ∈ dom ∫1 → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
561560ad3antlr 729 . . . . 5 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘( “ (ran ∖ {0}))) ∈ ℝ)
562 ovolsscl 24089 . . . . 5 ((((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡}) ⊆ ( “ (ran ∖ {0})) ∧ ( “ (ran ∖ {0})) ⊆ ℝ ∧ (vol*‘( “ (ran ∖ {0}))) ∈ ℝ) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
563550, 553, 561, 562syl3anc 1367 . . . 4 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ (𝑡 ∈ ℝ ∧ 𝑡 ≠ 0)) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
564503, 563syl 17 . . 3 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol*‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
565499, 564eqeltrd 2915 . 2 ((((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) ∧ 𝑡 ∈ (ran (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∖ {0})) → (vol‘((𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) “ {𝑡})) ∈ ℝ)
56631, 128, 497, 565i1fd 24284 1 (((𝜑 ∈ dom ∫1) ∧ 𝑣 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(((((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)) ≤ (𝑥) ∧ (𝑥) ≠ 0), (((⌊‘((𝐹𝑥) / (𝑣 / 3))) − 1) · (𝑣 / 3)), (𝑥))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  ifcif 4469  {csn 4569   ciun 4921   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  Fun wfun 6351   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  Fincfn 8511  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  3c3 11696  0cn0 11900  cz 11984  +crp 12392  (,)cioo 12741  [,)cico 12743  ...cfz 12895  cfl 13163  vol*covol 24065  volcvol 24066  MblFncmbf 24217  1citg1 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223
This theorem is referenced by:  itg2addnclem3  34947
  Copyright terms: Public domain W3C validator