MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl7bi Structured version   Visualization version   GIF version

Theorem syl7bi 255
Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.)
Hypotheses
Ref Expression
syl7bi.1 (𝜑𝜓)
syl7bi.2 (𝜒 → (𝜃 → (𝜓𝜏)))
Assertion
Ref Expression
syl7bi (𝜒 → (𝜃 → (𝜑𝜏)))

Proof of Theorem syl7bi
StepHypRef Expression
1 syl7bi.1 . . 3 (𝜑𝜓)
21biimpi 216 . 2 (𝜑𝜓)
3 syl7bi.2 . 2 (𝜒 → (𝜃 → (𝜓𝜏)))
42, 3syl7 74 1 (𝜒 → (𝜃 → (𝜑𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  3jao  1427  rspct  3574  zfpair  5376  gruen  10765  axpre-sup  11122  nn0lt2  12597  fzofzim  13670  ndvdssub  16379  cyccom  19135  alexsubALT  23938  clwlkclwwlklem2a  29927  erclwwlktr  29951  erclwwlkntr  30000  fmlasuc  35373  dfon2lem8  35778  prtlem15  38868  prtlem18  38870  2reuimp0  47115
  Copyright terms: Public domain W3C validator