| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7bi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl7bi.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl7bi.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7bi | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7bi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | syl7bi.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl7 74 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3jao 1427 rspct 3577 zfpair 5379 gruen 10772 axpre-sup 11129 nn0lt2 12604 fzofzim 13677 ndvdssub 16386 cyccom 19142 alexsubALT 23945 clwlkclwwlklem2a 29934 erclwwlktr 29958 erclwwlkntr 30007 fmlasuc 35380 dfon2lem8 35785 prtlem15 38875 prtlem18 38877 2reuimp0 47119 |
| Copyright terms: Public domain | W3C validator |