| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7bi | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl7bi.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl7bi.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7bi | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7bi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | syl7bi.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl7 74 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3jao 1427 rspct 3565 zfpair 5363 gruen 10725 axpre-sup 11082 nn0lt2 12557 fzofzim 13630 ndvdssub 16338 cyccom 19100 alexsubALT 23954 clwlkclwwlklem2a 29960 erclwwlktr 29984 erclwwlkntr 30033 fmlasuc 35358 dfon2lem8 35763 prtlem15 38853 prtlem18 38855 2reuimp0 47099 |
| Copyright terms: Public domain | W3C validator |