![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl7bi | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl7bi.1 | ⊢ (𝜑 ↔ 𝜓) |
syl7bi.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7bi | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7bi.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → 𝜓) |
3 | syl7bi.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl7 74 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3jao 1423 rspct 3593 zfpair 5415 gruen 10829 axpre-sup 11186 nn0lt2 12649 fzofzim 13705 ndvdssub 16379 cyccom 19151 alexsubALT 23948 clwlkclwwlklem2a 29801 erclwwlktr 29825 erclwwlkntr 29874 fmlasuc 34986 dfon2lem8 35376 prtlem15 38336 prtlem18 38338 2reuimp0 46466 |
Copyright terms: Public domain | W3C validator |