![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaod | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1425 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 |
This theorem is referenced by: 3jaodan 1431 3jaao 1433 fntpb 7246 dfwe2 7809 poseq 8199 smo11 8420 smoord 8421 omeulem1 8638 omopth2 8640 oaabs2 8705 elfiun 9499 r111 9844 r1pwss 9853 pwcfsdom 10652 winalim2 10765 xmullem 13326 xmulasslem 13347 xlemul1a 13350 xrsupsslem 13369 xrinfmsslem 13370 xrub 13374 fvf1tp 13840 symgvalstruct 19438 symgvalstructOLD 19439 ordtbas2 23220 ordtbas 23221 fmfnfmlem4 23986 dyadmbl 25654 scvxcvx 27047 perfectlem2 27292 2sq2 27495 ostth3 27700 sltsolem1 27738 addsproplem7 28026 negsproplem7 28084 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 satfun 35379 lineext 36040 fscgr 36044 colinbtwnle 36082 broutsideof2 36086 lineunray 36111 lineelsb2 36112 elicc3 36283 4atlem11 39566 dalawlem10 39837 3cubeslem1 42640 dflim5 43291 omabs2 43294 omcl3g 43296 naddwordnexlem4 43363 frege129d 43725 goldbachth 47421 perfectALTVlem2 47596 eenglngeehlnmlem1 48471 eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |