![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaod | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1424 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: 3jaodan 1429 3jaao 1432 fntpb 7213 dfwe2 7765 poseq 8149 smo11 8370 smoord 8371 omeulem1 8588 omopth2 8590 oaabs2 8654 elfiun 9431 r111 9776 r1pwss 9785 pwcfsdom 10584 winalim2 10697 xmullem 13250 xmulasslem 13271 xlemul1a 13274 xrsupsslem 13293 xrinfmsslem 13294 xrub 13298 symgvalstruct 19312 symgvalstructOLD 19313 ordtbas2 23015 ordtbas 23016 fmfnfmlem4 23781 dyadmbl 25449 scvxcvx 26831 perfectlem2 27076 2sq2 27279 ostth3 27484 sltsolem1 27521 addsproplem7 27805 negsproplem7 27859 mulsproplem5 27933 mulsproplem6 27934 mulsproplem7 27935 mulsproplem8 27936 satfun 34866 lineext 35518 fscgr 35522 colinbtwnle 35560 broutsideof2 35564 lineunray 35589 lineelsb2 35590 elicc3 35666 4atlem11 38944 dalawlem10 39215 3cubeslem1 41885 dflim5 42542 omabs2 42545 omcl3g 42547 naddwordnexlem4 42615 frege129d 42977 goldbachth 46674 perfectALTVlem2 46849 eenglngeehlnmlem1 47585 eenglngeehlnmlem2 47586 |
Copyright terms: Public domain | W3C validator |