MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaod Structured version   Visualization version   GIF version

Theorem 3jaod 1427
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (𝜑 → (𝜓𝜒))
3jaod.2 (𝜑 → (𝜃𝜒))
3jaod.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3jaod (𝜑 → ((𝜓𝜃𝜏) → 𝜒))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (𝜑 → (𝜓𝜒))
2 3jaod.2 . 2 (𝜑 → (𝜃𝜒))
3 3jaod.3 . 2 (𝜑 → (𝜏𝜒))
4 3jao 1424 . 2 (((𝜓𝜒) ∧ (𝜃𝜒) ∧ (𝜏𝜒)) → ((𝜓𝜃𝜏) → 𝜒))
51, 2, 3, 4syl3anc 1370 1 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088
This theorem is referenced by:  3jaodan  1429  3jaao  1432  fntpb  7085  dfwe2  7624  smo11  8195  smoord  8196  omeulem1  8413  omopth2  8415  oaabs2  8479  elfiun  9189  r111  9533  r1pwss  9542  pwcfsdom  10339  winalim2  10452  xmullem  12998  xmulasslem  13019  xlemul1a  13022  xrsupsslem  13041  xrinfmsslem  13042  xrub  13046  symgvalstruct  19004  symgvalstructOLD  19005  ordtbas2  22342  ordtbas  22343  fmfnfmlem4  23108  dyadmbl  24764  scvxcvx  26135  perfectlem2  26378  2sq2  26581  ostth3  26786  satfun  33373  poseq  33802  sltsolem1  33878  lineext  34378  fscgr  34382  colinbtwnle  34420  broutsideof2  34424  lineunray  34449  lineelsb2  34450  elicc3  34506  4atlem11  37623  dalawlem10  37894  3cubeslem1  40506  frege129d  41371  goldbachth  44999  perfectALTVlem2  45174  eenglngeehlnmlem1  46083  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator