Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jaod | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1424 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: 3jaodan 1429 3jaao 1432 fntpb 7085 dfwe2 7624 smo11 8195 smoord 8196 omeulem1 8413 omopth2 8415 oaabs2 8479 elfiun 9189 r111 9533 r1pwss 9542 pwcfsdom 10339 winalim2 10452 xmullem 12998 xmulasslem 13019 xlemul1a 13022 xrsupsslem 13041 xrinfmsslem 13042 xrub 13046 symgvalstruct 19004 symgvalstructOLD 19005 ordtbas2 22342 ordtbas 22343 fmfnfmlem4 23108 dyadmbl 24764 scvxcvx 26135 perfectlem2 26378 2sq2 26581 ostth3 26786 satfun 33373 poseq 33802 sltsolem1 33878 lineext 34378 fscgr 34382 colinbtwnle 34420 broutsideof2 34424 lineunray 34449 lineelsb2 34450 elicc3 34506 4atlem11 37623 dalawlem10 37894 3cubeslem1 40506 frege129d 41371 goldbachth 44999 perfectALTVlem2 45174 eenglngeehlnmlem1 46083 eenglngeehlnmlem2 46084 |
Copyright terms: Public domain | W3C validator |