![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaod | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1424 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
This theorem is referenced by: 3jaodan 1430 3jaao 1432 fntpb 7228 dfwe2 7792 poseq 8181 smo11 8402 smoord 8403 omeulem1 8618 omopth2 8620 oaabs2 8685 elfiun 9467 r111 9812 r1pwss 9821 pwcfsdom 10620 winalim2 10733 xmullem 13302 xmulasslem 13323 xlemul1a 13326 xrsupsslem 13345 xrinfmsslem 13346 xrub 13350 fvf1tp 13825 symgvalstruct 19428 symgvalstructOLD 19429 ordtbas2 23214 ordtbas 23215 fmfnfmlem4 23980 dyadmbl 25648 scvxcvx 27043 perfectlem2 27288 2sq2 27491 ostth3 27696 sltsolem1 27734 addsproplem7 28022 negsproplem7 28080 mulsproplem5 28160 mulsproplem6 28161 mulsproplem7 28162 mulsproplem8 28163 satfun 35395 lineext 36057 fscgr 36061 colinbtwnle 36099 broutsideof2 36103 lineunray 36128 lineelsb2 36129 elicc3 36299 4atlem11 39591 dalawlem10 39862 3cubeslem1 42671 dflim5 43318 omabs2 43321 omcl3g 43323 naddwordnexlem4 43390 frege129d 43752 goldbachth 47471 perfectALTVlem2 47646 gpgedgel 47942 gpgusgralem 47945 gpgvtxedg0 47955 gpgvtxedg1 47956 gpgnbgrvtx0 47964 gpgnbgrvtx1 47965 eenglngeehlnmlem1 48586 eenglngeehlnmlem2 48587 |
Copyright terms: Public domain | W3C validator |