Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jaod | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1423 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 |
This theorem is referenced by: 3jaodan 1428 3jaao 1431 fntpb 7067 dfwe2 7602 smo11 8166 smoord 8167 omeulem1 8375 omopth2 8377 oaabs2 8439 elfiun 9119 r111 9464 r1pwss 9473 pwcfsdom 10270 winalim2 10383 xmullem 12927 xmulasslem 12948 xlemul1a 12951 xrsupsslem 12970 xrinfmsslem 12971 xrub 12975 symgvalstruct 18919 symgvalstructOLD 18920 ordtbas2 22250 ordtbas 22251 fmfnfmlem4 23016 dyadmbl 24669 scvxcvx 26040 perfectlem2 26283 2sq2 26486 ostth3 26691 satfun 33273 poseq 33729 sltsolem1 33805 lineext 34305 fscgr 34309 colinbtwnle 34347 broutsideof2 34351 lineunray 34376 lineelsb2 34377 elicc3 34433 4atlem11 37550 dalawlem10 37821 3cubeslem1 40422 frege129d 41260 goldbachth 44887 perfectALTVlem2 45062 eenglngeehlnmlem1 45971 eenglngeehlnmlem2 45972 |
Copyright terms: Public domain | W3C validator |