| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaod | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| 3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
| 4 | 3jao 1427 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: 3jaodan 1433 3jaao 1435 fntpb 7201 dfwe2 7768 poseq 8157 smo11 8378 smoord 8379 omeulem1 8594 omopth2 8596 oaabs2 8661 elfiun 9442 r111 9789 r1pwss 9798 pwcfsdom 10597 winalim2 10710 xmullem 13280 xmulasslem 13301 xlemul1a 13304 xrsupsslem 13323 xrinfmsslem 13324 xrub 13328 fvf1tp 13806 symgvalstruct 19378 ordtbas2 23129 ordtbas 23130 fmfnfmlem4 23895 dyadmbl 25553 scvxcvx 26948 perfectlem2 27193 2sq2 27396 ostth3 27601 sltsolem1 27639 addsproplem7 27934 negsproplem7 27992 mulsproplem5 28075 mulsproplem6 28076 mulsproplem7 28077 mulsproplem8 28078 satfun 35433 lineext 36094 fscgr 36098 colinbtwnle 36136 broutsideof2 36140 lineunray 36165 lineelsb2 36166 elicc3 36335 4atlem11 39628 dalawlem10 39899 3cubeslem1 42707 dflim5 43353 omabs2 43356 omcl3g 43358 naddwordnexlem4 43425 frege129d 43787 goldbachth 47561 perfectALTVlem2 47736 gpgiedgdmellem 48050 gpgusgralem 48060 gpgvtxedg0 48067 gpgvtxedg1 48068 gpgnbgrvtx0 48076 gpgnbgrvtx1 48077 eenglngeehlnmlem1 48717 eenglngeehlnmlem2 48718 |
| Copyright terms: Public domain | W3C validator |