MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orel2 Structured version   Visualization version   GIF version

Theorem 3orel2 1484
Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
3orel2 𝜓 → ((𝜑𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem 3orel2
StepHypRef Expression
1 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
2 3orel1 1090 . . 3 𝜓 → ((𝜓𝜒𝜑) → (𝜒𝜑)))
3 orcom 867 . . 3 ((𝜒𝜑) ↔ (𝜑𝜒))
42, 3syl6ib 250 . 2 𝜓 → ((𝜓𝜒𝜑) → (𝜑𝜒)))
51, 4syl5bi 241 1 𝜓 → ((𝜑𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  nogesgn1o  33876  nosep1o  33884  nosupbnd1lem5  33915
  Copyright terms: Public domain W3C validator