Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o)) → 𝐵 ∈ No
) |
2 | | nofv 33787 |
. . . . . 6
⊢ (𝐵 ∈
No → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o ∨ (𝐵‘𝑋) = 2o)) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o)) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o ∨ (𝐵‘𝑋) = 2o)) |
4 | | 3orel2 33556 |
. . . . 5
⊢ (¬
(𝐵‘𝑋) = 1o → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o ∨ (𝐵‘𝑋) = 2o) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o))) |
5 | 3, 4 | syl5com 31 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o)) → (¬ (𝐵‘𝑋) = 1o → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o))) |
6 | | simp13 1203 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → 𝑋 ∈ On) |
7 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
8 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
9 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
10 | 9 | fvresd 6776 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = (𝐴‘𝑦)) |
11 | 9 | fvresd 6776 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = (𝐵‘𝑦)) |
12 | 8, 10, 11 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴‘𝑦) = (𝐵‘𝑦)) |
13 | 12 | ralrimiva 3107 |
. . . . . . . . 9
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ∀𝑦 ∈ 𝑋 (𝐴‘𝑦) = (𝐵‘𝑦)) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) → ∀𝑦 ∈ 𝑋 (𝐴‘𝑦) = (𝐵‘𝑦)) |
15 | 14 | 3ad2ant2 1132 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → ∀𝑦 ∈ 𝑋 (𝐴‘𝑦) = (𝐵‘𝑦)) |
16 | | simp2r 1198 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → (𝐴‘𝑋) = 1o) |
17 | | simp3 1136 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) |
18 | 16, 17 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → ((𝐴‘𝑋) = 1o ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o))) |
19 | | andi 1004 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑋) = 1o ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) ↔ (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o))) |
20 | 18, 19 | sylib 217 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o))) |
21 | | 3mix1 1328 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) → (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o) ∨ ((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 2o))) |
22 | | 3mix2 1329 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o) → (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o) ∨ ((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 2o))) |
23 | 21, 22 | jaoi 853 |
. . . . . . . . 9
⊢ ((((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o)) → (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o) ∨ ((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 2o))) |
24 | 20, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o) ∨ ((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 2o))) |
25 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐴‘𝑋) ∈ V |
26 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐵‘𝑋) ∈ V |
27 | 25, 26 | brtp 33623 |
. . . . . . . 8
⊢ ((𝐴‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑋) ↔ (((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = ∅) ∨ ((𝐴‘𝑋) = 1o ∧ (𝐵‘𝑋) = 2o) ∨ ((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 2o))) |
28 | 24, 27 | sylibr 233 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → (𝐴‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑋)) |
29 | | raleq 3333 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ↔ ∀𝑦 ∈ 𝑋 (𝐴‘𝑦) = (𝐵‘𝑦))) |
30 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
31 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
32 | 30, 31 | breq12d 5083 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥) ↔ (𝐴‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑋))) |
33 | 29, 32 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)) ↔ (∀𝑦 ∈ 𝑋 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑋)))) |
34 | 33 | rspcev 3552 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ (∀𝑦 ∈ 𝑋 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑋))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥))) |
35 | 6, 15, 28, 34 | syl12anc 833 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥))) |
36 | | simp11 1201 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → 𝐴 ∈ No
) |
37 | | simp12 1202 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → 𝐵 ∈ No
) |
38 | | sltval 33777 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
39 | 36, 37, 38 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
40 | 35, 39 | mpbird 256 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o)) → 𝐴 <s 𝐵) |
41 | 40 | 3expia 1119 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 2o) → 𝐴 <s 𝐵)) |
42 | 5, 41 | syld 47 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o)) → (¬ (𝐵‘𝑋) = 1o → 𝐴 <s 𝐵)) |
43 | 42 | con1d 145 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o)) → (¬ 𝐴 <s 𝐵 → (𝐵‘𝑋) = 1o)) |
44 | 43 | 3impia 1115 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐵‘𝑋) = 1o) |