| Step | Hyp | Ref
| Expression |
| 1 | | nosupbnd1.1 |
. . . . . . . 8
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 2 | 1 | nosupno 27749 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
| 3 | 2 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 ∈ No
) |
| 4 | 3 | adantl 481 |
. . . . 5
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑆 ∈ No
) |
| 5 | | nodmord 27699 |
. . . . 5
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
| 6 | | ordirr 6401 |
. . . . 5
⊢ (Ord dom
𝑆 → ¬ dom 𝑆 ∈ dom 𝑆) |
| 7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ dom 𝑆 ∈ dom 𝑆) |
| 8 | | simpr3l 1234 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑈 ∈ 𝐴) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈 ∈ 𝐴) |
| 10 | | ndmfv 6940 |
. . . . . . . . 9
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅) |
| 11 | | 1oex 8517 |
. . . . . . . . . . . . 13
⊢
1o ∈ V |
| 12 | 11 | prid1 4761 |
. . . . . . . . . . . 12
⊢
1o ∈ {1o, 2o} |
| 13 | 12 | nosgnn0i 27705 |
. . . . . . . . . . 11
⊢ ∅
≠ 1o |
| 14 | | neeq1 3002 |
. . . . . . . . . . 11
⊢ ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 1o ↔ ∅ ≠
1o)) |
| 15 | 13, 14 | mpbiri 258 |
. . . . . . . . . 10
⊢ ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o) |
| 16 | 15 | neneqd 2944 |
. . . . . . . . 9
⊢ ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 1o) |
| 17 | 10, 16 | syl 17 |
. . . . . . . 8
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 1o) |
| 18 | 17 | con4i 114 |
. . . . . . 7
⊢ ((𝑈‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑈) |
| 19 | 18 | adantl 481 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈) |
| 20 | | simp2l 1199 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 ⊆ No
) |
| 21 | | simp3l 1201 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ 𝐴) |
| 22 | 20, 21 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ No
) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈 ∈ No
) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑈 ∈ No
) |
| 25 | | nofun 27695 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈
No → Fun 𝑈) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑈) |
| 27 | | simpl2l 1226 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝐴 ⊆ No
) |
| 28 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → 𝑧 ∈ 𝐴) |
| 29 | | ssel2 3977 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ 𝑧 ∈
𝐴) → 𝑧 ∈
No ) |
| 30 | 27, 28, 29 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑧 ∈
No ) |
| 31 | | nofun 27695 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
No → Fun 𝑧) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑧) |
| 33 | | simpl3r 1229 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (𝑈 ↾ dom 𝑆) = 𝑆) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = 𝑆) |
| 35 | | simpll1 1212 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → ¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 36 | | simpll2 1213 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝐴 ⊆
No ∧ 𝐴 ∈
V)) |
| 37 | | simpll3 1214 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
| 38 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) |
| 39 | 1 | nosupbnd1lem2 27755 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈))) → (𝑧 ↾ dom 𝑆) = 𝑆) |
| 40 | 35, 36, 37, 38, 39 | syl112anc 1375 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧 ↾ dom 𝑆) = 𝑆) |
| 41 | 34, 40 | eqtr4d 2779 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆)) |
| 42 | 18 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑈) |
| 44 | | ndmfv 6940 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
dom 𝑆 ∈ dom 𝑧 → (𝑧‘dom 𝑆) = ∅) |
| 45 | | neeq1 3002 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧‘dom 𝑆) = ∅ → ((𝑧‘dom 𝑆) ≠ 1o ↔ ∅ ≠
1o)) |
| 46 | 13, 45 | mpbiri 258 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧‘dom 𝑆) = ∅ → (𝑧‘dom 𝑆) ≠ 1o) |
| 47 | 46 | neneqd 2944 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧‘dom 𝑆) = ∅ → ¬ (𝑧‘dom 𝑆) = 1o) |
| 48 | 44, 47 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (¬
dom 𝑆 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑆) = 1o) |
| 49 | 48 | con4i 114 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑧) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑧) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑧) |
| 52 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = 1o) |
| 53 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧‘dom 𝑆) = 1o) |
| 54 | 52, 53 | eqtr4d 2779 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆)) |
| 55 | | eqfunressuc 7382 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆) ∧ (dom 𝑆 ∈ dom 𝑈 ∧ dom 𝑆 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) |
| 56 | 26, 32, 41, 43, 51, 54, 55 | syl213anc 1390 |
. . . . . . . . . . . 12
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) |
| 57 | 56 | expr 456 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
| 58 | 57 | expr 456 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧 ∈ 𝐴) → (¬ 𝑧 <s 𝑈 → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 59 | 58 | a2d 29 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧 ∈ 𝐴) → ((¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 60 | 59 | ralimdva 3166 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 61 | 60 | impcom 407 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o)) → ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
| 62 | 61 | anassrs 467 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
| 63 | | dmeq 5913 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) |
| 64 | 63 | eleq2d 2826 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈)) |
| 65 | | breq2 5146 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → (𝑧 <s 𝑝 ↔ 𝑧 <s 𝑈)) |
| 66 | 65 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (¬ 𝑧 <s 𝑝 ↔ ¬ 𝑧 <s 𝑈)) |
| 67 | | reseq1 5990 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆)) |
| 68 | 67 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
| 69 | 66, 68 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 70 | 69 | ralbidv 3177 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → (∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 71 | 64, 70 | anbi12d 632 |
. . . . . . 7
⊢ (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
| 72 | 71 | rspcev 3621 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 73 | 9, 19, 62, 72 | syl12anc 836 |
. . . . 5
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 74 | | simplr1 1215 |
. . . . . . 7
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 75 | 1 | nosupdm 27750 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}) |
| 76 | 75 | eleq2d 2826 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})) |
| 77 | 74, 76 | syl 17 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})) |
| 78 | 4 | adantr 480 |
. . . . . . 7
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑆 ∈ No
) |
| 79 | | nodmon 27696 |
. . . . . . 7
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
| 80 | | eleq1 2828 |
. . . . . . . . . 10
⊢ (𝑎 = dom 𝑆 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝)) |
| 81 | | suceq 6449 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = dom 𝑆 → suc 𝑎 = suc dom 𝑆) |
| 82 | 81 | reseq2d 5996 |
. . . . . . . . . . . . 13
⊢ (𝑎 = dom 𝑆 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑆)) |
| 83 | 81 | reseq2d 5996 |
. . . . . . . . . . . . 13
⊢ (𝑎 = dom 𝑆 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑆)) |
| 84 | 82, 83 | eqeq12d 2752 |
. . . . . . . . . . . 12
⊢ (𝑎 = dom 𝑆 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
| 85 | 84 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑎 = dom 𝑆 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 86 | 85 | ralbidv 3177 |
. . . . . . . . . 10
⊢ (𝑎 = dom 𝑆 → (∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
| 87 | 80, 86 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑎 = dom 𝑆 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
| 88 | 87 | rexbidv 3178 |
. . . . . . . 8
⊢ (𝑎 = dom 𝑆 → (∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
| 89 | 88 | elabg 3675 |
. . . . . . 7
⊢ (dom
𝑆 ∈ On → (dom
𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
| 90 | 78, 79, 89 | 3syl 18 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
| 91 | 77, 90 | bitrd 279 |
. . . . 5
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
| 92 | 73, 91 | mpbird 257 |
. . . 4
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑆) |
| 93 | 7, 92 | mtand 815 |
. . 3
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ (𝑈‘dom 𝑆) = 1o) |
| 94 | 93 | neqned 2946 |
. 2
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o) |
| 95 | | rexanali 3101 |
. . 3
⊢
(∃𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ↔ ¬
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o)) |
| 96 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) → 𝑧 ∈ 𝐴) |
| 97 | 20, 96, 29 | syl2an 596 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 ∈ No
) |
| 98 | | nofv 27703 |
. . . . . . . . . 10
⊢ (𝑧 ∈
No → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o)) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o)) |
| 100 | | 3orel2 1485 |
. . . . . . . . 9
⊢ (¬
(𝑧‘dom 𝑆) = 1o →
(((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o))) |
| 101 | 99, 100 | syl5com 31 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (¬ (𝑧‘dom 𝑆) = 1o → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o))) |
| 102 | 101 | imdistanda 571 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))) |
| 103 | | simpl1 1191 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 104 | | simpl2 1192 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
| 105 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 ∈ 𝐴) |
| 106 | | simpl3 1193 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
| 107 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) |
| 108 | 103, 104,
106, 107, 39 | syl112anc 1375 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ↾ dom 𝑆) = 𝑆) |
| 109 | 1 | nosupbnd1lem4 27757 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑧 ∈ 𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ ∅) |
| 110 | 103, 104,
105, 108, 109 | syl112anc 1375 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ ∅) |
| 111 | 110 | neneqd 2944 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = ∅) |
| 112 | 111 | pm2.21d 121 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o)) |
| 113 | 1 | nosupbnd1lem3 27756 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑧 ∈ 𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ 2o) |
| 114 | 103, 104,
105, 108, 113 | syl112anc 1375 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ 2o) |
| 115 | 114 | neneqd 2944 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = 2o) |
| 116 | 115 | pm2.21d 121 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 2o → (𝑈‘dom 𝑆) ≠ 1o)) |
| 117 | 112, 116 | jaod 859 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o) → (𝑈‘dom 𝑆) ≠ 1o)) |
| 118 | 117 | expimpd 453 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)) → (𝑈‘dom 𝑆) ≠ 1o)) |
| 119 | 102, 118 | syldc 48 |
. . . . . 6
⊢ (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)) |
| 120 | 119 | anasss 466 |
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o)) → ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)) |
| 121 | 120 | rexlimiva 3146 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)) |
| 122 | 121 | imp 406 |
. . 3
⊢
((∃𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o) |
| 123 | 95, 122 | sylanbr 582 |
. 2
⊢ ((¬
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o) |
| 124 | 94, 123 | pm2.61ian 811 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o) |