MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem5 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem5 27651
Description: Lemma for nosupbnd1 27653. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 1o. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
Distinct variable group:   𝑢,𝐴,𝑣,𝑦,𝑥,𝑔
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupbnd1lem5
Dummy variables 𝑎 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27642 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
323ad2ant2 1134 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
43adantl 481 . . . . 5 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑆 No )
5 nodmord 27592 . . . . 5 (𝑆 No → Ord dom 𝑆)
6 ordirr 6324 . . . . 5 (Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆)
74, 5, 63syl 18 . . . 4 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ dom 𝑆 ∈ dom 𝑆)
8 simpr3l 1235 . . . . . . 7 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑈𝐴)
98adantr 480 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈𝐴)
10 ndmfv 6854 . . . . . . . . 9 (¬ dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅)
11 1oex 8395 . . . . . . . . . . . . 13 1o ∈ V
1211prid1 4712 . . . . . . . . . . . 12 1o ∈ {1o, 2o}
1312nosgnn0i 27598 . . . . . . . . . . 11 ∅ ≠ 1o
14 neeq1 2990 . . . . . . . . . . 11 ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 1o ↔ ∅ ≠ 1o))
1513, 14mpbiri 258 . . . . . . . . . 10 ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o)
1615neneqd 2933 . . . . . . . . 9 ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 1o)
1710, 16syl 17 . . . . . . . 8 (¬ dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 1o)
1817con4i 114 . . . . . . 7 ((𝑈‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑈)
1918adantl 481 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈)
20 simp2l 1200 . . . . . . . . . . . . . . . . 17 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 No )
21 simp3l 1202 . . . . . . . . . . . . . . . . 17 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈𝐴)
2220, 21sseldd 3930 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 No )
2322adantr 480 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈 No )
2423adantr 480 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑈 No )
25 nofun 27588 . . . . . . . . . . . . . 14 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑈)
27 simpl2l 1227 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝐴 No )
28 simpll 766 . . . . . . . . . . . . . . 15 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → 𝑧𝐴)
29 ssel2 3924 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑧𝐴) → 𝑧 No )
3027, 28, 29syl2an 596 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑧 No )
31 nofun 27588 . . . . . . . . . . . . . 14 (𝑧 No → Fun 𝑧)
3230, 31syl 17 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑧)
33 simpl3r 1230 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (𝑈 ↾ dom 𝑆) = 𝑆)
3433adantr 480 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = 𝑆)
35 simpll1 1213 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
36 simpll2 1214 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝐴 No 𝐴 ∈ V))
37 simpll3 1215 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
38 simprl 770 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))
391nosupbnd1lem2 27648 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))) → (𝑧 ↾ dom 𝑆) = 𝑆)
4035, 36, 37, 38, 39syl112anc 1376 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧 ↾ dom 𝑆) = 𝑆)
4134, 40eqtr4d 2769 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆))
4218adantl 481 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈)
4342adantr 480 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑈)
44 ndmfv 6854 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑆 ∈ dom 𝑧 → (𝑧‘dom 𝑆) = ∅)
45 neeq1 2990 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑆) = ∅ → ((𝑧‘dom 𝑆) ≠ 1o ↔ ∅ ≠ 1o))
4613, 45mpbiri 258 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑆) = ∅ → (𝑧‘dom 𝑆) ≠ 1o)
4746neneqd 2933 . . . . . . . . . . . . . . . . 17 ((𝑧‘dom 𝑆) = ∅ → ¬ (𝑧‘dom 𝑆) = 1o)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (¬ dom 𝑆 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑆) = 1o)
4948con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑧)
5049adantl 481 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑧)
5150adantl 481 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑧)
52 simplr 768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = 1o)
53 simprr 772 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧‘dom 𝑆) = 1o)
5452, 53eqtr4d 2769 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))
55 eqfunressuc 7295 . . . . . . . . . . . . 13 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆) ∧ (dom 𝑆 ∈ dom 𝑈 ∧ dom 𝑆 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))
5626, 32, 41, 43, 51, 54, 55syl213anc 1391 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))
5756expr 456 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
5857expr 456 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧𝐴) → (¬ 𝑧 <s 𝑈 → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
5958a2d 29 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧𝐴) → ((¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
6059ralimdva 3144 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
6160impcom 407 . . . . . . 7 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o)) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
6261anassrs 467 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
63 dmeq 5842 . . . . . . . . 9 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6463eleq2d 2817 . . . . . . . 8 (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈))
65 breq2 5093 . . . . . . . . . . 11 (𝑝 = 𝑈 → (𝑧 <s 𝑝𝑧 <s 𝑈))
6665notbid 318 . . . . . . . . . 10 (𝑝 = 𝑈 → (¬ 𝑧 <s 𝑝 ↔ ¬ 𝑧 <s 𝑈))
67 reseq1 5921 . . . . . . . . . . 11 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆))
6867eqeq1d 2733 . . . . . . . . . 10 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
6966, 68imbi12d 344 . . . . . . . . 9 (𝑝 = 𝑈 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
7069ralbidv 3155 . . . . . . . 8 (𝑝 = 𝑈 → (∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
7164, 70anbi12d 632 . . . . . . 7 (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
7271rspcev 3572 . . . . . 6 ((𝑈𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
739, 19, 62, 72syl12anc 836 . . . . 5 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
74 simplr1 1216 . . . . . . 7 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
751nosupdm 27643 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
7675eleq2d 2817 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
7774, 76syl 17 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
784adantr 480 . . . . . . 7 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑆 No )
79 nodmon 27589 . . . . . . 7 (𝑆 No → dom 𝑆 ∈ On)
80 eleq1 2819 . . . . . . . . . 10 (𝑎 = dom 𝑆 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝))
81 suceq 6374 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑆 → suc 𝑎 = suc dom 𝑆)
8281reseq2d 5927 . . . . . . . . . . . . 13 (𝑎 = dom 𝑆 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑆))
8381reseq2d 5927 . . . . . . . . . . . . 13 (𝑎 = dom 𝑆 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑆))
8482, 83eqeq12d 2747 . . . . . . . . . . . 12 (𝑎 = dom 𝑆 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
8584imbi2d 340 . . . . . . . . . . 11 (𝑎 = dom 𝑆 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
8685ralbidv 3155 . . . . . . . . . 10 (𝑎 = dom 𝑆 → (∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
8780, 86anbi12d 632 . . . . . . . . 9 (𝑎 = dom 𝑆 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
8887rexbidv 3156 . . . . . . . 8 (𝑎 = dom 𝑆 → (∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
8988elabg 3627 . . . . . . 7 (dom 𝑆 ∈ On → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9078, 79, 893syl 18 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9177, 90bitrd 279 . . . . 5 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9273, 91mpbird 257 . . . 4 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑆)
937, 92mtand 815 . . 3 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ (𝑈‘dom 𝑆) = 1o)
9493neqned 2935 . 2 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
95 rexanali 3086 . . 3 (∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ↔ ¬ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o))
96 simpl 482 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) → 𝑧𝐴)
9720, 96, 29syl2an 596 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 No )
98 nofv 27596 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o))
9997, 98syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o))
100 3orel2 1486 . . . . . . . . 9 (¬ (𝑧‘dom 𝑆) = 1o → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))
10199, 100syl5com 31 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (¬ (𝑧‘dom 𝑆) = 1o → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))
102101imdistanda 571 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o))))
103 simpl1 1192 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
104 simpl2 1193 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝐴 No 𝐴 ∈ V))
105 simprl 770 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧𝐴)
106 simpl3 1194 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
107 simpr 484 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))
108103, 104, 106, 107, 39syl112anc 1376 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ↾ dom 𝑆) = 𝑆)
1091nosupbnd1lem4 27650 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑧𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ ∅)
110103, 104, 105, 108, 109syl112anc 1376 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ ∅)
111110neneqd 2933 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = ∅)
112111pm2.21d 121 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o))
1131nosupbnd1lem3 27649 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑧𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ 2o)
114103, 104, 105, 108, 113syl112anc 1376 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ 2o)
115114neneqd 2933 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = 2o)
116115pm2.21d 121 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 2o → (𝑈‘dom 𝑆) ≠ 1o))
117112, 116jaod 859 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o) → (𝑈‘dom 𝑆) ≠ 1o))
118117expimpd 453 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)) → (𝑈‘dom 𝑆) ≠ 1o))
119102, 118syldc 48 . . . . . 6 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
120119anasss 466 . . . . 5 ((𝑧𝐴 ∧ (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o)) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
121120rexlimiva 3125 . . . 4 (∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
122121imp 406 . . 3 ((∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
12395, 122sylanbr 582 . 2 ((¬ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
12494, 123pm2.61ian 811 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897  c0 4280  ifcif 4472  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  Ord word 6305  Oncon0 6306  suc csuc 6308  cio 6435  Fun wfun 6475  cfv 6481  crio 7302  1oc1o 8378  2oc2o 8379   No csur 27578   <s cslt 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583
This theorem is referenced by:  nosupbnd1lem6  27652
  Copyright terms: Public domain W3C validator