MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem5 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem5 27624
Description: Lemma for nosupbnd1 27626. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 1o. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
Distinct variable group:   𝑢,𝐴,𝑣,𝑦,𝑥,𝑔
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupbnd1lem5
Dummy variables 𝑎 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27615 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
323ad2ant2 1134 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
43adantl 481 . . . . 5 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑆 No )
5 nodmord 27565 . . . . 5 (𝑆 No → Ord dom 𝑆)
6 ordirr 6350 . . . . 5 (Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆)
74, 5, 63syl 18 . . . 4 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ dom 𝑆 ∈ dom 𝑆)
8 simpr3l 1235 . . . . . . 7 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑈𝐴)
98adantr 480 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈𝐴)
10 ndmfv 6893 . . . . . . . . 9 (¬ dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅)
11 1oex 8444 . . . . . . . . . . . . 13 1o ∈ V
1211prid1 4726 . . . . . . . . . . . 12 1o ∈ {1o, 2o}
1312nosgnn0i 27571 . . . . . . . . . . 11 ∅ ≠ 1o
14 neeq1 2987 . . . . . . . . . . 11 ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 1o ↔ ∅ ≠ 1o))
1513, 14mpbiri 258 . . . . . . . . . 10 ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o)
1615neneqd 2930 . . . . . . . . 9 ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 1o)
1710, 16syl 17 . . . . . . . 8 (¬ dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 1o)
1817con4i 114 . . . . . . 7 ((𝑈‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑈)
1918adantl 481 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈)
20 simp2l 1200 . . . . . . . . . . . . . . . . 17 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 No )
21 simp3l 1202 . . . . . . . . . . . . . . . . 17 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈𝐴)
2220, 21sseldd 3947 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 No )
2322adantr 480 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈 No )
2423adantr 480 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑈 No )
25 nofun 27561 . . . . . . . . . . . . . 14 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑈)
27 simpl2l 1227 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝐴 No )
28 simpll 766 . . . . . . . . . . . . . . 15 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → 𝑧𝐴)
29 ssel2 3941 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑧𝐴) → 𝑧 No )
3027, 28, 29syl2an 596 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑧 No )
31 nofun 27561 . . . . . . . . . . . . . 14 (𝑧 No → Fun 𝑧)
3230, 31syl 17 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑧)
33 simpl3r 1230 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (𝑈 ↾ dom 𝑆) = 𝑆)
3433adantr 480 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = 𝑆)
35 simpll1 1213 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
36 simpll2 1214 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝐴 No 𝐴 ∈ V))
37 simpll3 1215 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
38 simprl 770 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))
391nosupbnd1lem2 27621 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))) → (𝑧 ↾ dom 𝑆) = 𝑆)
4035, 36, 37, 38, 39syl112anc 1376 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧 ↾ dom 𝑆) = 𝑆)
4134, 40eqtr4d 2767 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆))
4218adantl 481 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈)
4342adantr 480 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑈)
44 ndmfv 6893 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑆 ∈ dom 𝑧 → (𝑧‘dom 𝑆) = ∅)
45 neeq1 2987 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑆) = ∅ → ((𝑧‘dom 𝑆) ≠ 1o ↔ ∅ ≠ 1o))
4613, 45mpbiri 258 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑆) = ∅ → (𝑧‘dom 𝑆) ≠ 1o)
4746neneqd 2930 . . . . . . . . . . . . . . . . 17 ((𝑧‘dom 𝑆) = ∅ → ¬ (𝑧‘dom 𝑆) = 1o)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (¬ dom 𝑆 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑆) = 1o)
4948con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑧)
5049adantl 481 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑧)
5150adantl 481 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑧)
52 simplr 768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = 1o)
53 simprr 772 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧‘dom 𝑆) = 1o)
5452, 53eqtr4d 2767 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))
55 eqfunressuc 7336 . . . . . . . . . . . . 13 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆) ∧ (dom 𝑆 ∈ dom 𝑈 ∧ dom 𝑆 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))
5626, 32, 41, 43, 51, 54, 55syl213anc 1391 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))
5756expr 456 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
5857expr 456 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧𝐴) → (¬ 𝑧 <s 𝑈 → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
5958a2d 29 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧𝐴) → ((¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
6059ralimdva 3145 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
6160impcom 407 . . . . . . 7 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o)) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
6261anassrs 467 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
63 dmeq 5867 . . . . . . . . 9 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6463eleq2d 2814 . . . . . . . 8 (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈))
65 breq2 5111 . . . . . . . . . . 11 (𝑝 = 𝑈 → (𝑧 <s 𝑝𝑧 <s 𝑈))
6665notbid 318 . . . . . . . . . 10 (𝑝 = 𝑈 → (¬ 𝑧 <s 𝑝 ↔ ¬ 𝑧 <s 𝑈))
67 reseq1 5944 . . . . . . . . . . 11 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆))
6867eqeq1d 2731 . . . . . . . . . 10 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
6966, 68imbi12d 344 . . . . . . . . 9 (𝑝 = 𝑈 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
7069ralbidv 3156 . . . . . . . 8 (𝑝 = 𝑈 → (∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
7164, 70anbi12d 632 . . . . . . 7 (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
7271rspcev 3588 . . . . . 6 ((𝑈𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
739, 19, 62, 72syl12anc 836 . . . . 5 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
74 simplr1 1216 . . . . . . 7 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
751nosupdm 27616 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
7675eleq2d 2814 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
7774, 76syl 17 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
784adantr 480 . . . . . . 7 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑆 No )
79 nodmon 27562 . . . . . . 7 (𝑆 No → dom 𝑆 ∈ On)
80 eleq1 2816 . . . . . . . . . 10 (𝑎 = dom 𝑆 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝))
81 suceq 6400 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑆 → suc 𝑎 = suc dom 𝑆)
8281reseq2d 5950 . . . . . . . . . . . . 13 (𝑎 = dom 𝑆 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑆))
8381reseq2d 5950 . . . . . . . . . . . . 13 (𝑎 = dom 𝑆 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑆))
8482, 83eqeq12d 2745 . . . . . . . . . . . 12 (𝑎 = dom 𝑆 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
8584imbi2d 340 . . . . . . . . . . 11 (𝑎 = dom 𝑆 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
8685ralbidv 3156 . . . . . . . . . 10 (𝑎 = dom 𝑆 → (∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
8780, 86anbi12d 632 . . . . . . . . 9 (𝑎 = dom 𝑆 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
8887rexbidv 3157 . . . . . . . 8 (𝑎 = dom 𝑆 → (∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
8988elabg 3643 . . . . . . 7 (dom 𝑆 ∈ On → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9078, 79, 893syl 18 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9177, 90bitrd 279 . . . . 5 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9273, 91mpbird 257 . . . 4 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑆)
937, 92mtand 815 . . 3 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ (𝑈‘dom 𝑆) = 1o)
9493neqned 2932 . 2 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
95 rexanali 3084 . . 3 (∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ↔ ¬ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o))
96 simpl 482 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) → 𝑧𝐴)
9720, 96, 29syl2an 596 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 No )
98 nofv 27569 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o))
9997, 98syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o))
100 3orel2 1486 . . . . . . . . 9 (¬ (𝑧‘dom 𝑆) = 1o → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))
10199, 100syl5com 31 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (¬ (𝑧‘dom 𝑆) = 1o → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))
102101imdistanda 571 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o))))
103 simpl1 1192 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
104 simpl2 1193 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝐴 No 𝐴 ∈ V))
105 simprl 770 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧𝐴)
106 simpl3 1194 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
107 simpr 484 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))
108103, 104, 106, 107, 39syl112anc 1376 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ↾ dom 𝑆) = 𝑆)
1091nosupbnd1lem4 27623 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑧𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ ∅)
110103, 104, 105, 108, 109syl112anc 1376 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ ∅)
111110neneqd 2930 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = ∅)
112111pm2.21d 121 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o))
1131nosupbnd1lem3 27622 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑧𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ 2o)
114103, 104, 105, 108, 113syl112anc 1376 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ 2o)
115114neneqd 2930 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = 2o)
116115pm2.21d 121 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 2o → (𝑈‘dom 𝑆) ≠ 1o))
117112, 116jaod 859 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o) → (𝑈‘dom 𝑆) ≠ 1o))
118117expimpd 453 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)) → (𝑈‘dom 𝑆) ≠ 1o))
119102, 118syldc 48 . . . . . 6 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
120119anasss 466 . . . . 5 ((𝑧𝐴 ∧ (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o)) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
121120rexlimiva 3126 . . . 4 (∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
122121imp 406 . . 3 ((∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
12395, 122sylanbr 582 . 2 ((¬ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
12494, 123pm2.61ian 811 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  wss 3914  c0 4296  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  Ord word 6331  Oncon0 6332  suc csuc 6334  cio 6462  Fun wfun 6505  cfv 6511  crio 7343  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556
This theorem is referenced by:  nosupbnd1lem6  27625
  Copyright terms: Public domain W3C validator