MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem5 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem5 27775
Description: Lemma for nosupbnd1 27777. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 1o. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupbnd1lem5
Dummy variables 𝑎 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27766 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
323ad2ant2 1134 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
43adantl 481 . . . . 5 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑆 No )
5 nodmord 27716 . . . . 5 (𝑆 No → Ord dom 𝑆)
6 ordirr 6413 . . . . 5 (Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆)
74, 5, 63syl 18 . . . 4 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ dom 𝑆 ∈ dom 𝑆)
8 simpr3l 1234 . . . . . . 7 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑈𝐴)
98adantr 480 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈𝐴)
10 ndmfv 6955 . . . . . . . . 9 (¬ dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅)
11 1oex 8532 . . . . . . . . . . . . 13 1o ∈ V
1211prid1 4787 . . . . . . . . . . . 12 1o ∈ {1o, 2o}
1312nosgnn0i 27722 . . . . . . . . . . 11 ∅ ≠ 1o
14 neeq1 3009 . . . . . . . . . . 11 ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 1o ↔ ∅ ≠ 1o))
1513, 14mpbiri 258 . . . . . . . . . 10 ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o)
1615neneqd 2951 . . . . . . . . 9 ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 1o)
1710, 16syl 17 . . . . . . . 8 (¬ dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 1o)
1817con4i 114 . . . . . . 7 ((𝑈‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑈)
1918adantl 481 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈)
20 simp2l 1199 . . . . . . . . . . . . . . . . 17 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 No )
21 simp3l 1201 . . . . . . . . . . . . . . . . 17 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈𝐴)
2220, 21sseldd 4009 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 No )
2322adantr 480 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑈 No )
2423adantr 480 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑈 No )
25 nofun 27712 . . . . . . . . . . . . . 14 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑈)
27 simpl2l 1226 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → 𝐴 No )
28 simpll 766 . . . . . . . . . . . . . . 15 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → 𝑧𝐴)
29 ssel2 4003 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑧𝐴) → 𝑧 No )
3027, 28, 29syl2an 595 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → 𝑧 No )
31 nofun 27712 . . . . . . . . . . . . . 14 (𝑧 No → Fun 𝑧)
3230, 31syl 17 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → Fun 𝑧)
33 simpl3r 1229 . . . . . . . . . . . . . . 15 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (𝑈 ↾ dom 𝑆) = 𝑆)
3433adantr 480 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = 𝑆)
35 simpll1 1212 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
36 simpll2 1213 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝐴 No 𝐴 ∈ V))
37 simpll3 1214 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
38 simprl 770 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))
391nosupbnd1lem2 27772 . . . . . . . . . . . . . . 15 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))) → (𝑧 ↾ dom 𝑆) = 𝑆)
4035, 36, 37, 38, 39syl112anc 1374 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧 ↾ dom 𝑆) = 𝑆)
4134, 40eqtr4d 2783 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆))
4218adantl 481 . . . . . . . . . . . . . 14 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑈)
4342adantr 480 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑈)
44 ndmfv 6955 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑆 ∈ dom 𝑧 → (𝑧‘dom 𝑆) = ∅)
45 neeq1 3009 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑆) = ∅ → ((𝑧‘dom 𝑆) ≠ 1o ↔ ∅ ≠ 1o))
4613, 45mpbiri 258 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑆) = ∅ → (𝑧‘dom 𝑆) ≠ 1o)
4746neneqd 2951 . . . . . . . . . . . . . . . . 17 ((𝑧‘dom 𝑆) = ∅ → ¬ (𝑧‘dom 𝑆) = 1o)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (¬ dom 𝑆 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑆) = 1o)
4948con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑆) = 1o → dom 𝑆 ∈ dom 𝑧)
5049adantl 481 . . . . . . . . . . . . . 14 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑧)
5150adantl 481 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → dom 𝑆 ∈ dom 𝑧)
52 simplr 768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = 1o)
53 simprr 772 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑧‘dom 𝑆) = 1o)
5452, 53eqtr4d 2783 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))
55 eqfunressuc 7397 . . . . . . . . . . . . 13 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆) ∧ (dom 𝑆 ∈ dom 𝑈 ∧ dom 𝑆 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))
5626, 32, 41, 43, 51, 54, 55syl213anc 1389 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1o)) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))
5756expr 456 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
5857expr 456 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧𝐴) → (¬ 𝑧 <s 𝑈 → ((𝑧‘dom 𝑆) = 1o → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
5958a2d 29 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) ∧ 𝑧𝐴) → ((¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
6059ralimdva 3173 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o) → (∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
6160impcom 407 . . . . . . 7 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1o)) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
6261anassrs 467 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
63 dmeq 5928 . . . . . . . . 9 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6463eleq2d 2830 . . . . . . . 8 (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈))
65 breq2 5170 . . . . . . . . . . 11 (𝑝 = 𝑈 → (𝑧 <s 𝑝𝑧 <s 𝑈))
6665notbid 318 . . . . . . . . . 10 (𝑝 = 𝑈 → (¬ 𝑧 <s 𝑝 ↔ ¬ 𝑧 <s 𝑈))
67 reseq1 6003 . . . . . . . . . . 11 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆))
6867eqeq1d 2742 . . . . . . . . . 10 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
6966, 68imbi12d 344 . . . . . . . . 9 (𝑝 = 𝑈 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
7069ralbidv 3184 . . . . . . . 8 (𝑝 = 𝑈 → (∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
7164, 70anbi12d 631 . . . . . . 7 (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
7271rspcev 3635 . . . . . 6 ((𝑈𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
739, 19, 62, 72syl12anc 836 . . . . 5 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
74 simplr1 1215 . . . . . . 7 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
751nosupdm 27767 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
7675eleq2d 2830 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
7774, 76syl 17 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
784adantr 480 . . . . . . 7 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → 𝑆 No )
79 nodmon 27713 . . . . . . 7 (𝑆 No → dom 𝑆 ∈ On)
80 eleq1 2832 . . . . . . . . . 10 (𝑎 = dom 𝑆 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝))
81 suceq 6461 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑆 → suc 𝑎 = suc dom 𝑆)
8281reseq2d 6009 . . . . . . . . . . . . 13 (𝑎 = dom 𝑆 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑆))
8381reseq2d 6009 . . . . . . . . . . . . 13 (𝑎 = dom 𝑆 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑆))
8482, 83eqeq12d 2756 . . . . . . . . . . . 12 (𝑎 = dom 𝑆 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))
8584imbi2d 340 . . . . . . . . . . 11 (𝑎 = dom 𝑆 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
8685ralbidv 3184 . . . . . . . . . 10 (𝑎 = dom 𝑆 → (∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))
8780, 86anbi12d 631 . . . . . . . . 9 (𝑎 = dom 𝑆 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
8887rexbidv 3185 . . . . . . . 8 (𝑎 = dom 𝑆 → (∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
8988elabg 3690 . . . . . . 7 (dom 𝑆 ∈ On → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9078, 79, 893syl 18 . . . . . 6 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9177, 90bitrd 279 . . . . 5 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧𝐴𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))))
9273, 91mpbird 257 . . . 4 (((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1o) → dom 𝑆 ∈ dom 𝑆)
937, 92mtand 815 . . 3 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ (𝑈‘dom 𝑆) = 1o)
9493neqned 2953 . 2 ((∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
95 rexanali 3108 . . 3 (∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ↔ ¬ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o))
96 simpl 482 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) → 𝑧𝐴)
9720, 96, 29syl2an 595 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 No )
98 nofv 27720 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o))
9997, 98syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o))
100 3orel2 1484 . . . . . . . . 9 (¬ (𝑧‘dom 𝑆) = 1o → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1o ∨ (𝑧‘dom 𝑆) = 2o) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))
10199, 100syl5com 31 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (¬ (𝑧‘dom 𝑆) = 1o → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)))
102101imdistanda 571 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o))))
103 simpl1 1191 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
104 simpl2 1192 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝐴 No 𝐴 ∈ V))
105 simprl 770 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧𝐴)
106 simpl3 1193 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
107 simpr 484 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈))
108103, 104, 106, 107, 39syl112anc 1374 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ↾ dom 𝑆) = 𝑆)
1091nosupbnd1lem4 27774 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑧𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ ∅)
110103, 104, 105, 108, 109syl112anc 1374 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ ∅)
111110neneqd 2951 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = ∅)
112111pm2.21d 121 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 1o))
1131nosupbnd1lem3 27773 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑧𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ 2o)
114103, 104, 105, 108, 113syl112anc 1374 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ 2o)
115114neneqd 2951 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = 2o)
116115pm2.21d 121 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 2o → (𝑈‘dom 𝑆) ≠ 1o))
117112, 116jaod 858 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o) → (𝑈‘dom 𝑆) ≠ 1o))
118117expimpd 453 . . . . . . 7 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2o)) → (𝑈‘dom 𝑆) ≠ 1o))
119102, 118syldc 48 . . . . . 6 (((𝑧𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
120119anasss 466 . . . . 5 ((𝑧𝐴 ∧ (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o)) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
121120rexlimiva 3153 . . . 4 (∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) → ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o))
122121imp 406 . . 3 ((∃𝑧𝐴𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
12395, 122sylanbr 581 . 2 ((¬ ∀𝑧𝐴𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1o) ∧ (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠ 1o)
12494, 123pm2.61ian 811 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  ifcif 4548  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249  dom cdm 5700  cres 5702  Ord word 6394  Oncon0 6395  suc csuc 6397  cio 6523  Fun wfun 6567  cfv 6573  crio 7403  1oc1o 8515  2oc2o 8516   No csur 27702   <s cslt 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707
This theorem is referenced by:  nosupbnd1lem6  27776
  Copyright terms: Public domain W3C validator