MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosep1o Structured version   Visualization version   GIF version

Theorem nosep1o 27593
Description: If the value of a surreal at a separator is 1o then the surreal is lesser. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
nosep1o (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐴 <s 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosep1o
StepHypRef Expression
1 simpr 484 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o)
2 nosepne 27592 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
32adantr 480 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
41, 3eqnetrrd 2993 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 1o ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
54necomd 2980 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 1o)
65neneqd 2930 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ¬ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o)
7 simpl2 1193 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐵 No )
8 nofv 27569 . . . . . . . . 9 (𝐵 No → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
97, 8syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
10 3orel2 1486 . . . . . . . 8 (¬ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o → (((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
116, 9, 10sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
12 eqid 2729 . . . . . . 7 1o = 1o
1311, 12jctil 519 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (1o = 1o ∧ ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
14 andi 1009 . . . . . 6 ((1o = 1o ∧ ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ↔ ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1513, 14sylib 218 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
16 3mix1 1331 . . . . . 6 ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
17 3mix2 1332 . . . . . 6 ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1816, 17jaoi 857 . . . . 5 (((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1915, 18syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
20 1oex 8444 . . . . 5 1o ∈ V
21 fvex 6871 . . . . 5 (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ∈ V
2220, 21brtp 5483 . . . 4 (1o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
2319, 22sylibr 234 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 1o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
241, 23eqbrtrd 5129 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
25 simpl1 1192 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐴 No )
26 sltval2 27568 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
2725, 7, 26syl2anc 584 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
2824, 27mpbird 257 1 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐴 <s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3405  c0 4296  {ctp 4593  cop 4595   cint 4910   class class class wbr 5107  Oncon0 6332  cfv 6511  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555
This theorem is referenced by:  noetasuplem4  27648
  Copyright terms: Public domain W3C validator