MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosep1o Structured version   Visualization version   GIF version

Theorem nosep1o 27607
Description: If the value of a surreal at a separator is 1o then the surreal is lesser. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
nosep1o (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐴 <s 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosep1o
StepHypRef Expression
1 simpr 484 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o)
2 nosepne 27606 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
32adantr 480 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
41, 3eqnetrrd 3005 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 1o ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
54necomd 2992 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ 1o)
65neneqd 2941 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ¬ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o)
7 simpl2 1190 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐵 No )
8 nofv 27583 . . . . . . . . 9 (𝐵 No → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
97, 8syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
10 3orel2 1481 . . . . . . . 8 (¬ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o → (((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
116, 9, 10sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o))
12 eqid 2728 . . . . . . 7 1o = 1o
1311, 12jctil 519 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (1o = 1o ∧ ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
14 andi 1006 . . . . . 6 ((1o = 1o ∧ ((𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) ↔ ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1513, 14sylib 217 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
16 3mix1 1328 . . . . . 6 ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
17 3mix2 1329 . . . . . 6 ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1816, 17jaoi 856 . . . . 5 (((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
1915, 18syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
20 1oex 8490 . . . . 5 1o ∈ V
21 fvex 6904 . . . . 5 (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ∈ V
2220, 21brtp 5519 . . . 4 (1o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ ((1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ (1o = 1o ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o) ∨ (1o = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2o)))
2319, 22sylibr 233 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 1o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
241, 23eqbrtrd 5164 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
25 simpl1 1189 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐴 No )
26 sltval2 27582 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
2725, 7, 26syl2anc 583 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
2824, 27mpbird 257 1 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1o) → 𝐴 <s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3o 1084  w3a 1085   = wceq 1534  wcel 2099  wne 2936  {crab 3428  c0 4318  {ctp 4628  cop 4630   cint 4944   class class class wbr 5142  Oncon0 6363  cfv 6542  1oc1o 8473  2oc2o 8474   No csur 27566   <s cslt 27567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1o 8480  df-2o 8481  df-no 27569  df-slt 27570
This theorem is referenced by:  noetasuplem4  27662
  Copyright terms: Public domain W3C validator