|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 4casesdan | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013.) | 
| Ref | Expression | 
|---|---|
| 4casesdan.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
| 4casesdan.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ ¬ 𝜒)) → 𝜃) | 
| 4casesdan.3 | ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ 𝜒)) → 𝜃) | 
| 4casesdan.4 | ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) | 
| Ref | Expression | 
|---|---|
| 4casesdan | ⊢ (𝜑 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 4casesdan.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | expcom 413 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) | 
| 3 | 4casesdan.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ ¬ 𝜒)) → 𝜃) | |
| 4 | 3 | expcom 413 | . 2 ⊢ ((𝜓 ∧ ¬ 𝜒) → (𝜑 → 𝜃)) | 
| 5 | 4casesdan.3 | . . 3 ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ 𝜒)) → 𝜃) | |
| 6 | 5 | expcom 413 | . 2 ⊢ ((¬ 𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) | 
| 7 | 4casesdan.4 | . . 3 ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) | |
| 8 | 7 | expcom 413 | . 2 ⊢ ((¬ 𝜓 ∧ ¬ 𝜒) → (𝜑 → 𝜃)) | 
| 9 | 2, 4, 6, 8 | 4cases 1041 | 1 ⊢ (𝜑 → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: unxpdomlem3 9288 mndifsplit 22642 cdleme41snaw 40478 dihord 41266 dihjat 41425 2itscp 48702 | 
| Copyright terms: Public domain | W3C validator |