Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4casesdan | Structured version Visualization version GIF version |
Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013.) |
Ref | Expression |
---|---|
4casesdan.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4casesdan.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ ¬ 𝜒)) → 𝜃) |
4casesdan.3 | ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ 𝜒)) → 𝜃) |
4casesdan.4 | ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
4casesdan | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4casesdan.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | expcom 413 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 4casesdan.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ ¬ 𝜒)) → 𝜃) | |
4 | 3 | expcom 413 | . 2 ⊢ ((𝜓 ∧ ¬ 𝜒) → (𝜑 → 𝜃)) |
5 | 4casesdan.3 | . . 3 ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ 𝜒)) → 𝜃) | |
6 | 5 | expcom 413 | . 2 ⊢ ((¬ 𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
7 | 4casesdan.4 | . . 3 ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) | |
8 | 7 | expcom 413 | . 2 ⊢ ((¬ 𝜓 ∧ ¬ 𝜒) → (𝜑 → 𝜃)) |
9 | 2, 4, 6, 8 | 4cases 1037 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: unxpdomlem3 8958 mndifsplit 21693 cdleme41snaw 38417 dihord 39205 dihjat 39364 2itscp 46015 |
Copyright terms: Public domain | W3C validator |