MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11reg Structured version   Visualization version   GIF version

Theorem suc11reg 9084
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11reg (suc 𝐴 = suc 𝐵𝐴 = 𝐵)

Proof of Theorem suc11reg
StepHypRef Expression
1 en2lp 9071 . . . . 5 ¬ (𝐴𝐵𝐵𝐴)
2 ianor 978 . . . . 5 (¬ (𝐴𝐵𝐵𝐴) ↔ (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
31, 2mpbi 232 . . . 4 𝐴𝐵 ∨ ¬ 𝐵𝐴)
4 sucidg 6271 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
5 eleq2 2903 . . . . . . . . . . 11 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
64, 5syl5ibcom 247 . . . . . . . . . 10 (𝐴 ∈ V → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
7 elsucg 6260 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
86, 7sylibd 241 . . . . . . . . 9 (𝐴 ∈ V → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
98imp 409 . . . . . . . 8 ((𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
109ord 860 . . . . . . 7 ((𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵) → (¬ 𝐴𝐵𝐴 = 𝐵))
1110ex 415 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 = suc 𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵)))
1211com23 86 . . . . 5 (𝐴 ∈ V → (¬ 𝐴𝐵 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
13 sucidg 6271 . . . . . . . . . . . 12 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
14 eleq2 2903 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
1513, 14syl5ibrcom 249 . . . . . . . . . . 11 (𝐵 ∈ V → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
16 elsucg 6260 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
1715, 16sylibd 241 . . . . . . . . . 10 (𝐵 ∈ V → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
1817imp 409 . . . . . . . . 9 ((𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
1918ord 860 . . . . . . . 8 ((𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵) → (¬ 𝐵𝐴𝐵 = 𝐴))
20 eqcom 2830 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
2119, 20syl6ib 253 . . . . . . 7 ((𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵) → (¬ 𝐵𝐴𝐴 = 𝐵))
2221ex 415 . . . . . 6 (𝐵 ∈ V → (suc 𝐴 = suc 𝐵 → (¬ 𝐵𝐴𝐴 = 𝐵)))
2322com23 86 . . . . 5 (𝐵 ∈ V → (¬ 𝐵𝐴 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
2412, 23jaao 951 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
253, 24mpi 20 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
26 sucexb 7526 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
27 sucexb 7526 . . . . . 6 (𝐵 ∈ V ↔ suc 𝐵 ∈ V)
2827notbii 322 . . . . 5 𝐵 ∈ V ↔ ¬ suc 𝐵 ∈ V)
29 nelneq 2939 . . . . 5 ((suc 𝐴 ∈ V ∧ ¬ suc 𝐵 ∈ V) → ¬ suc 𝐴 = suc 𝐵)
3026, 28, 29syl2anb 599 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → ¬ suc 𝐴 = suc 𝐵)
3130pm2.21d 121 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
32 eqcom 2830 . . . 4 (suc 𝐴 = suc 𝐵 ↔ suc 𝐵 = suc 𝐴)
3326notbii 322 . . . . . . 7 𝐴 ∈ V ↔ ¬ suc 𝐴 ∈ V)
34 nelneq 2939 . . . . . . 7 ((suc 𝐵 ∈ V ∧ ¬ suc 𝐴 ∈ V) → ¬ suc 𝐵 = suc 𝐴)
3527, 33, 34syl2anb 599 . . . . . 6 ((𝐵 ∈ V ∧ ¬ 𝐴 ∈ V) → ¬ suc 𝐵 = suc 𝐴)
3635ancoms 461 . . . . 5 ((¬ 𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ suc 𝐵 = suc 𝐴)
3736pm2.21d 121 . . . 4 ((¬ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (suc 𝐵 = suc 𝐴𝐴 = 𝐵))
3832, 37syl5bi 244 . . 3 ((¬ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
39 sucprc 6268 . . . . 5 𝐴 ∈ V → suc 𝐴 = 𝐴)
40 sucprc 6268 . . . . 5 𝐵 ∈ V → suc 𝐵 = 𝐵)
4139, 40eqeqan12d 2840 . . . 4 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
4241biimpd 231 . . 3 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
4325, 31, 38, 424cases 1035 . 2 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
44 suceq 6258 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
4543, 44impbii 211 1 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  Vcvv 3496  suc csuc 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-eprel 5467  df-fr 5516  df-suc 6199
This theorem is referenced by:  rankxpsuc  9313  unidifsnel  30297  unidifsnne  30298  bnj551  32015  clsk1indlem1  40402
  Copyright terms: Public domain W3C validator