MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11reg Structured version   Visualization version   GIF version

Theorem suc11reg 9659
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11reg (suc 𝐴 = suc 𝐵𝐴 = 𝐵)

Proof of Theorem suc11reg
StepHypRef Expression
1 en2lp 9646 . . . . 5 ¬ (𝐴𝐵𝐵𝐴)
2 ianor 984 . . . . 5 (¬ (𝐴𝐵𝐵𝐴) ↔ (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴))
31, 2mpbi 230 . . . 4 𝐴𝐵 ∨ ¬ 𝐵𝐴)
4 sucidg 6465 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
5 eleq2 2830 . . . . . . . . . . 11 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
64, 5syl5ibcom 245 . . . . . . . . . 10 (𝐴 ∈ V → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
7 elsucg 6452 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
86, 7sylibd 239 . . . . . . . . 9 (𝐴 ∈ V → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
98imp 406 . . . . . . . 8 ((𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
109ord 865 . . . . . . 7 ((𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵) → (¬ 𝐴𝐵𝐴 = 𝐵))
1110ex 412 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 = suc 𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵)))
1211com23 86 . . . . 5 (𝐴 ∈ V → (¬ 𝐴𝐵 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
13 sucidg 6465 . . . . . . . . . . . 12 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
14 eleq2 2830 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
1513, 14syl5ibrcom 247 . . . . . . . . . . 11 (𝐵 ∈ V → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
16 elsucg 6452 . . . . . . . . . . 11 (𝐵 ∈ V → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
1715, 16sylibd 239 . . . . . . . . . 10 (𝐵 ∈ V → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
1817imp 406 . . . . . . . . 9 ((𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
1918ord 865 . . . . . . . 8 ((𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵) → (¬ 𝐵𝐴𝐵 = 𝐴))
20 eqcom 2744 . . . . . . . 8 (𝐵 = 𝐴𝐴 = 𝐵)
2119, 20imbitrdi 251 . . . . . . 7 ((𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵) → (¬ 𝐵𝐴𝐴 = 𝐵))
2221ex 412 . . . . . 6 (𝐵 ∈ V → (suc 𝐴 = suc 𝐵 → (¬ 𝐵𝐴𝐴 = 𝐵)))
2322com23 86 . . . . 5 (𝐵 ∈ V → (¬ 𝐵𝐴 → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
2412, 23jaao 957 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐴) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵)))
253, 24mpi 20 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
26 sucexb 7824 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
27 sucexb 7824 . . . . . 6 (𝐵 ∈ V ↔ suc 𝐵 ∈ V)
2827notbii 320 . . . . 5 𝐵 ∈ V ↔ ¬ suc 𝐵 ∈ V)
29 nelneq 2865 . . . . 5 ((suc 𝐴 ∈ V ∧ ¬ suc 𝐵 ∈ V) → ¬ suc 𝐴 = suc 𝐵)
3026, 28, 29syl2anb 598 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → ¬ suc 𝐴 = suc 𝐵)
3130pm2.21d 121 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
32 eqcom 2744 . . . 4 (suc 𝐴 = suc 𝐵 ↔ suc 𝐵 = suc 𝐴)
3326notbii 320 . . . . . . 7 𝐴 ∈ V ↔ ¬ suc 𝐴 ∈ V)
34 nelneq 2865 . . . . . . 7 ((suc 𝐵 ∈ V ∧ ¬ suc 𝐴 ∈ V) → ¬ suc 𝐵 = suc 𝐴)
3527, 33, 34syl2anb 598 . . . . . 6 ((𝐵 ∈ V ∧ ¬ 𝐴 ∈ V) → ¬ suc 𝐵 = suc 𝐴)
3635ancoms 458 . . . . 5 ((¬ 𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ suc 𝐵 = suc 𝐴)
3736pm2.21d 121 . . . 4 ((¬ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (suc 𝐵 = suc 𝐴𝐴 = 𝐵))
3832, 37biimtrid 242 . . 3 ((¬ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
39 sucprc 6460 . . . . 5 𝐴 ∈ V → suc 𝐴 = 𝐴)
40 sucprc 6460 . . . . 5 𝐵 ∈ V → suc 𝐵 = 𝐵)
4139, 40eqeqan12d 2751 . . . 4 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
4241biimpd 229 . . 3 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
4325, 31, 38, 424cases 1041 . 2 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
44 suceq 6450 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
4543, 44impbii 209 1 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-eprel 5584  df-fr 5637  df-suc 6390
This theorem is referenced by:  rankxpsuc  9922  unidifsnel  32553  unidifsnne  32554  bnj551  34756  suceqsneq  38238  clsk1indlem1  44058
  Copyright terms: Public domain W3C validator